Environmental Engineering Reference
In-Depth Information
First find the Green function G
(
x
,
s
)
that satisfies
k
(
,
)
d
d x
d G
x
s
(
x
)
= δ (
x
s
) ,
d x
(3.44)
G
(
0
,
s
)=
G
(
l
,
s
)=
0
.
k
d
d x
d G
(
x
,
s
)
The general solution of
(
x
)
=
0is
d x
G
=
(
)+
(
) ,
,
.
c 1 u 1
x
c 2 u 2
x
c 1
c 2 are constants
where
d x
u 1 (
x
)=
1
,
u 2 (
x
)=
) .
k
(
x
Let
(
a 1 +
b 1 )
u 1 +(
a 2 +
b 2 )
u 2 ,
x
s
,
G
(
x
,
s
)=
(3.45)
(
a 1
b 1 )
u 1 +(
a 2
b 2 )
u 2 ,
x
s
.
Applying the property of G and d G
d x
at x
=
s ,
s + ,
s ,
d G
(
s
)
d G
(
s
)
1
s + ,
s ,
G
(
s
)
G
(
s
)=
0
,
=
d x
d x
k
(
s
)
yields
u 2 (
s
)
1
b 1 =
) ,
b 2 =
) .
2 u 2 (
2 u 2 (
s
)
k
(
s
s
)
k
(
s
(
,
)=
(
,
)=
Applying the boundary conditions G
0
s
G
l
s
0 thus leads to
a 2 =
2 b 1
b 2 [
u 2 (
0
)+
u 2 (
l
)]
a 1 =
b 1 (
a 2 +
b 2 )
u 2 (
0
) ,
.
u 2 (
0
)
u 2 (
l
)
With the Green function G
(
x
,
s
)
, we transform PDS (3.42) into an eigenvalue prob-
lem of the integral equation
l
X
(
x
)= λ
G
(
x
,
s
)
X
(
s
)
d s
.
(3.46)
0
 
Search WWH ::




Custom Search