Environmental Engineering Reference
In-Depth Information
Solution. We first find the solution for the case f
=
0. It can be readily written as,
nl t ,
ω nl t in Eq. (2.59) by e ω
simply by replacing sin
+
P n (
u
=
W Φ (
r
, θ , ϕ ,
t
)=
1 (
b mnl cos m
ϕ +
d mnl sin m
ϕ )
cos
θ )
m
,
n
=
0
,
l
=
μ (
)
2
n
+
nl t
l
e ω
×
j n
r
,
a 0
μ (
)
2
n
+
1
l
r 2 sin
b 0 nl =
Φ (
r
, θ , ϕ )
P n (
cos
θ )
j n
r
θ
d
θ
d r d
ϕ ,
2
π
M 0 nl
a 0
r
a 0
μ (
2
)
n +
1
P n (
l
r 2 sin
b mnl =
Φ (
r
, θ , ϕ )
cos m
ϕ
cos
θ )
j n
r
θ
d
θ
d r d
ϕ ,
π
M mnl
a 0
r
a 0
μ (
1
2
)
n +
1
P n (
l
r 2 sin
d mnl =
Φ (
r
, θ , ϕ )
sin m
ϕ
cos
θ )
j n
r
θ
d
θ
d r d
ϕ .
π
M mnl
a 0
r
a 0
Thus the solution of PDS (3.16) is, by the solution structure theorem,
t
u
=
W Φ (
r
, θ , ϕ ,
t
)+
W F τ (
r
, θ , ϕ ,
t
τ )
d
τ ,
0
where F τ =
,andthe
meanings of all parameters, functions and constants are the same as those for wave
equations in Section 2.6.
F
(
r
, θ , ϕ , τ ) ,
f
(
x
,
y
,
z
,
t
)=
F
(
r
, θ , ϕ ,
t
) , ϕ (
x
,
y
,
z
)= Φ (
r
, θ , ϕ )
3.3 Well-Posedness of PDS
We examine the well-posedness of PDS using the example
a 2 u xx ,
u t =
0
<
x
<
l
,
0
<
t
,
u
(
0
,
t
)=
u
(
l
,
t
)=
0
,
(3.17)
u
(
x
,
0
)= ϕ (
x
) .
 
Search WWH ::




Custom Search