Environmental Engineering Reference
In-Depth Information
The coordinate transformation that takes vector components from the fixed X-Y-Z
system to the rotating x p -y p -z p coordinates of the undeformed blade is as follows:
x p
y p
z p
a 11
a 12
a 13
é
ç ë
é
ç ë
é
ç ë
X
Y
Z
(11-1)
=
a 21
a 22
a 23
=
a 31
a 32
a 33
where
a 11 = c q p c y + b 0 s q p s y + f s q p
a 12 = c q p c yf - s q p + c c q p s y
a 13 = - c s q p - c q p s y + b 0 s q p c y
a 21 = s q p c y - b 0 c q p s y - f c q p
a 22 = s q p c yf + c q p + c s q p s y
a 23 = c c q p - s q p s y - b 0 c q p c y
a 31 = s y
a 32 = f s y + b 0 - c c y
a 31 = c y
c q p = cos q p
c y = cos y
s q p = sin q p
s y = siny
This transformation has been linearized by assuming a small yaw angle f, a small tilt
angle c, and a small coning angle b 0 . The angle of the principal axis, q p , may be large.
Of course, the blade azimuth angle, y, can vary from 0 to 2p radians. The inverse trans-
formation taking the x p -y p -z p components into the X-Y-Z system is given by the transpose
of the 3x3 matrix in Equation (11-1). The blade position for y = 0 is straight up.
Assuming small deformations, the transformation for obtaining h-z-x components is
é
ê ë
h
z
x
é
ê ë
1
0
0
é
ê ë
x p
y p
z p
(11-2)
=
0
1
- v
0
v
1
Search WWH ::




Custom Search