Environmental Engineering Reference
In-Depth Information
We introduce the Fourier transforms
Z
Z
1
1
G ( p )
D
f ( z )exp(
ipz ) dz ,
g ( p )
D
'
( z )exp(
ipz ) dz ,
(1.75)
1
1
which can be inverted to give
Z
1
Z
1
1
2
1
2
f ( z )
D
G ( p )exp( ipz ) dp ,
'
( z )
D
g ( p )exp( ipz ) dp .
π
π
1
1
Equation (1.75) yields
Z
Z
1
1
1, g 0 (0)
g 00 (0)
z k ,
g (0)
D
'
( z ) dz
D
D
i
z
'
( z ) dz
D
i z k ,
D
1
1
(1.76)
where z k and z k are the mean shift and the mean square shift of the variable after
one step. From (1.74) and (1.76) it follows that
exp
z k ! n
Z
1
X
n
Y
g n ( p ),
G ( p )
D
ip
1 '
( z k ) dz k
D
k
D
1
k
D
1
and hence
Z
Z
1
1
1
2
1
2
g n ( p )exp( ipz ) dp
f ( z )
D
D
exp( n ln g
C
ipz ) dp .
π
π
1
1
Since n
1, the integral converges at small p .Expandingln g in a power series
of p ,wehave
ln 1
z k p 2 /2
( z k ) 2 p 2 /2 ,
z k p 2 /2
ln g
D
i z k p
D
i z k p
C
which gives
Z
1
exp h ip ( nz k
nz k p 2 /2 i dp
1
2
f ( z )
D
z )
π
1
2 exp
.
z ) 2
1
( z
D
p 2
(1.77)
2
Δ
2
π Δ
In this exp res sion, z
D
nz k is the mean shift of the variable for n steps, z 2
D
nz k ,
( z ) 2 is the root-mean-square deviation of this value. Formula (1.77)
is called the normal distribution, or the Gaussian distribution. It is valid if the
principal contributio n t o the integral in (1.76) comes from small values of p ,that
is , i f z k p
2
D
z 2
and
Δ
1and z k p 2
1. Because this integral is determined by a range
nz k p 2
1, the Gaussian distribution is valid for a large number of steps n
1.
 
Search WWH ::




Custom Search