Chemistry Reference
In-Depth Information
References
1 Yarden, Y. and Sliwkowski (2001)
Untangling the ErbB signaling network.
Nat. Rev. Mol. Cell Biol.
hop diffusion of a G-protein-coupled
receptor in the plasma membrane as
revealed by single-molecule techniques.
Biophys. J.
137.
2 Lidke, D.S., Nagy, P., Heintzmann, R.,
Arndt-Jovin, D.J., Post, J.N., Grecco, H.E.,
Jares-Erijman, E.A. and Jovin, T.M. (2004)
Quantumdot ligands provide new insights
into erbB/HER receptor-mediated signal
transduction. Nat. Biotech. 22, 198.
3 Lidke, D.S., Lidke, K.A., Rieger, B., Jovin,
T.M. and Arndt-Jovin, D.J. (2005)
Reaching out for signals:
2
, 127
-
3680.
10 Hanley, Q.S., Verveer, P., Gemkow, M.,
Arndt-Jovin, D.J. and Jovin, T.M. (1999)
An optical sectioning programmable array
microscope implemented with a digital
micromirror device. J. Microsc.
196
88
, 3659
-
331.
11 Hanley, Q.S. and Jovin, T.M. (2001) Highly
multiplexed optically sectioned
spectroscopic imaging in a programmable
array microscope. App. Spectrosc.
, 317
-
filopodia sense
EGF and respond by directed retrograde
transport of activated receptors. J. Cell Biol.
170
, 1115.
12 Hanley, Q.S., Lidke, K.A., Heintzmann, R.,
Arndt-Jovin, D.J. and Jovin, T.M. (2005)
Fluorescence lifetime imaging in an
optically sectioning programmable array
microscope (PAM). Cytometry Part A
67A
55
626.
4 Grecco, H.E., Lidke, K.A., Heintzmann,
R., Lidke, D.S., Spagnuolo, C., Martinez,
O.E., Jares-Erijman, E.A. and Jovin, T.M.
(2004) Ensemble and single particle
photophysical properties (two-photon
excitation, anisotropy, FRET, lifetime,
spectral conversion) of commercial
quantum dots in solution and in live cells.
Microsc. Res. Tech.
, 619
-
118.
13 Heintzmann, R., Hanley, Q.S., Arndt-
Jovin, D. and Jovin, T.M. (2001) A dual
path programmable array microscope
(PAM): simultaneous acquisition of
conjugate and non-conjugate images.
J. Microsc.
, 112
-
179.
5 Jares-Erijman, E.A. and Jovin, T.M. (2003)
FRET imaging. Nat. Biotech.
65
, 169
-
, 1387.
6 Coates, C.G., Denvir, D.J., McHale, N.G.,
Thornbury, K.D. and Hollywood, M.A.
(2004) Optimizing low-light microscopy
with back-illuminated electron
multiplying charge-coupled device:
enhanced sensitivity, speed, and
resolution. J. Biomed. Opt. 9, 1244 - 1252.
7 Miskoski, S., Giordano, L., Etchehon,
M.H., Menendez, G., Lidke, K.A., Hagen,
G.M., Jovin, T.M. and Jares-Erijman, E.A.
(2006) Spectroscopic modulation of
multifunctionalized quantum dots for use
as biological probes and effectors. Proc.
SPIE 6096, 60960X.
8 Lidke, K.A., Rieger, B., Jovin, T.M. and
Heintzmann, R. (2005) Superresolution by
localizationof quantumdots usingblinking
statistics. Opt. Express
21
135.
14 Liang, M., Stehr, R.L. and Krause, A.W.,
(1997) Confocal pattern period inmultiple-
aperture confocal imaging systems with
coherent illumination. Opt. Lett. 22,
751 - 753.
15 Fukano, T. andMiyawaki, A. (2003)Whole-
field fluorescence microscope with digital
micromirror device: imaging of biological
samples. Appl. Opt.
204
, 119
-
4124.
16 Cha, S., Lin, P.C., Zhu, L., Sun, P.-C. and
Fainman, Y. (2000) Nontranslational three-
dimensional pro
42
, 4119
-
lometry by chromatic
confocal microscopy with dynamically
con
gurable micromirror scanning.
Appl. Opt.
2613.
17 Lane, P.M., Dlugan, A.L.P., Richards-
Kortum, R. and MacAulay, C.E. (2000)
Fiber-optic confocal microscopy using a
spatial light modulator. Opt. Lett
39
, 2605
-
7062.
9 Suzuki, K., Ritchie, K., Kajikawa, E.,
Fujiwara, T. and Kusumi, A. (2005) Rapid
12
,7052
-
25
,
1780
-
1782.
 
Search WWH ::




Custom Search