Biology Reference
In-Depth Information
phenotype caused by the MosTIC allele. This protocol was successfully used to
engineer point mutations, KO/del and KI alleles.
The use of MosTIC-engineered alleles is increasing and it has been demonstrated
that (i) they are compatible with genetics, cell biology, and biochemistry approaches,
(ii) their use minimizes experimental artifacts due to misexpression of transgenic
sequences in C. elegans, and (iii) gene tagging by homologous recombination can
bypass the time consuming and expensive task of developing specific antibodies
against each protein of interest.
Acknowledgment
The authors thank Luis Briseno-Roa and Berangere Pinan-Lucarre for critical reading of this
manuscript.
References
Barrett, P. L., Fleming, J. T., and Gobel, V. (2004). Targeted gene alteration in Caenorhabditis elegans by
gene conversion. Nat. Genet. 36 , 1231-1237.
Bazopoulou, D., and Tavernarakis, N. (2009). The NemaGENETAG initiative: Large scale transposon
insertion gene-tagging in Caenorhabditis elegans. Genetica 137 , 39-46.
Berezikov, E., Bargmann, C. I., and Plasterk, R. H. (2004). Homologous gene targeting in Caenorhabditis
elegans by biolistic transformation. Nucleic Acids Res. 32 , e40.
Berset, T. A., Hoier, E. F., and Hajnal, A. (2005). The C. elegans homolog of the mammalian stumor
suppressor Dep-1/Scc1 inhibits EGFR signaling to regulate binary cell fate decisions. Genes Dev. 19 ,
1328-1340.
Bessereau, J. L. (2006). Insertional mutagenesis in C. elegans using the Drosophila transposon Mos1: A
method for the rapid identification of mutated genes. Methods Mol. Biol. 351 , 59-73.
Bessereau, J. L., Wright, A., Williams, D. C., Schuske, K., Davis, M. W., and Jorgensen, E. M. (2001).
Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line. Nature 413 , 70-74.
Boulin, T., and Bessereau, J. L. (2007). Mos1-mediated insertional mutagenesis in Caenorhabditis
elegans. Nat. Protoc. 2 , 1276-1287.
Broverman, S., MacMorris, M., and Blumenthal, T. (1993). Alteration of Caenorhabditis elegans gene
expression by targeted transformation. Proc. Natl. Acad. Sci. U.S.A. 90 , 4359-4363.
Cheeseman, I. M., Niessen, S., Anderson, S., Hyndman, F., Yates 3rd, J. R., Oegema, K., and Desai, A.
(2004). A conserved protein network controls assembly of the outer kinetochore and its ability to sustain
tension. Genes Dev. 18 , 2255-2268.
Dernburg, A. F., Zalevsky, J., Colaiacovo, M. P., and Villeneuve, A. M. (2000). Transgene-mediated
cosuppression in the C. elegans germ line. Genes Dev. 14 , 1578-1583.
Doetschman, T., Gregg, R. G., Maeda, N., Hooper, M. L., Melton, D. W., Thompson, S., and Smithies, O.
(1987). Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330 ,
576-578.
Duverger, Y., Belougne, J., Scaglione, S., Brandli, D., Beclin, C., and Ewbank, J. J. (2007). A semi-
automated high-throughput approach to the generation of transposon insertion mutants in the nematode
Caenorhabditis elegans. Nucleic Acids Res. 35 , e11.
Evans, T. C., ed. Transformation and microinjection (April 6, 2006), WormBook, ed. The C. elegans
Research Community, WormBook, doi/10.1895/wormbook.1.108.1, http://www.wormbook.org .
Frokjaer-Jensen, C., Davis, M. W., Hopkins, C. E., Newman, B. J., Thummel, J. M., Olesen, S. P., Grunnet,
M., and Jorgensen, E. M. (2008). Single-copy insertion of transgenes in Caenorhabditis elegans. Nat.
Genet. 40 , 1375-1383.
Search WWH ::




Custom Search