Biology Reference
In-Depth Information
Wachtel, C., and Manley, J. L. (2009). Splicing of mRNA precursors: The role of RNAs and proteins in
catalysis. Mol. BioSyst. 5 , 311-316.
Wahl, M. C., Will, C. L., and Luhrmann, R. (2009). The spliceosome: Design principles of a dynamic RNP
machine. Cell 136 , 701-718.
Wallace, A., Filbin, M. E., Veo, B., McFarland, C., Stepinski, J., Jankowska-Anyszka, M., Darzynkiewicz,
E., and Davis, R. E. (2010). The nematode eIF4E/G complex works with a trans-spliced leader stem
loop to enable efficient translation of trimethylguanosine-capped RNAs. Mol. Cell Biol. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/20154140 [Accessed March 5, 2010].
Wang, Q., Zhang, L., Lynn, B., and Rymond, B. C. (2008). A BBP-Mud2p heterodimer mediates
branchpoint recognition and influences splicing substrate abundance in budding yeast. Nucleic Acids
Res. 36 , 2787-2798.
West, S., Gromak, N., and Proudfoot, N. J. (2004). Human 5 0 ! 3 0 exonuclease Xrn2 promotes tran-
scription termination at co-transcriptional cleavage sites. Nature 432 , 522-525.
Whittle, C. M., McClinic, K. N., Ercan, S., Zhang, X., Green, R. D., Kelly, W. G., and Lieb, J. D. (2008).
The genomic distribution and function of histone variant HTZ-1 during C. elegans embryogenesis.
PLoS Genet. 4 , e1000187.
Wickens, M., and Stephenson, P. (1984). Role of the conserved AAUAAA sequence: Four AAUAAA
point mutants prevent messenger RNA 3 0 end formation. Science 226 , 1045-1051.
Wieringa, B., Hofer, E., and Weissmann, C. (1984). A minimal intron length but no specific internal
sequence is required for splicing the large rabbit beta-globin intron. Cell 37 , 915-925.
Will, C. L., and Luhrmann, R. (2005). Splicing of a rare class of introns by the U12-dependent spliceo-
some. Biol. Chem. 386 , 713-724.
Williams, C., Xu, L., and Blumenthal, T. (1999). SL1 trans splicing and 3 0 -end formation in a novel class
of Caenorhabditis elegans operon. Mol. Cell Biol. 19 , 376-383.
Wong, S., and Wolfe, K. H. (2005). Birth of a metabolic gene cluster in yeast by adaptive gene relocation.
Nat. Genet. 37 , 777-782.
WormBase and WS210 Wormbase, WormBase, WS210 Wormbase - Home Page. Available at: http://
www.wormbase.org/ .
Wu, S., Romfo, C. M., Nilsen, T. W., and Green, M. R. (1999). Functional recognition of the 3 0 splice site
AG by the splicing factor U2AF35. Nature 402 , 832-835.
Xie, H., and Hirsh, D. (1998). In vivo function of mutated spliced leader RNAs in Caenorhabditis elegans.
Proc. Natl Acad. Sci. U. S. A. 95 , 4235-4240.
Zaslaver, A., Baugh, L. R., and Sternberg, P. W. (2011). Metazoan operons accelerate recovery from
growth-arrested states. Cell 145 , 981-992.
Zhang, H., and Blumenthal, T. (1996). Functional analysis of an intron 3 0 splice site in Caenorhabditis
elegans. RNA 2 , 380-388.
Zorio, D. A., and Blumenthal, T. (1999a). Both subunits of U2AF recognize the 3 0 splice site in
Caenorhabditis elegans. Nature 402 , 835-838.
Zorio, D. A., and Blumenthal, T. (1999b). U2AF35 is encoded by an essential gene clustered in an operon
with RRM/cyclophilin in Caenorhabditis elegans. RNA 5 , 487-494.
Zorio, D. A., Lea, K., and Blumenthal, T. (1997). Cloning of Caenorhabditis U2AF65: An alternatively
spliced RNA containing a novel exon. Mol. Cell Biol. 17 , 946-953.
Search WWH ::




Custom Search