Environmental Engineering Reference
In-Depth Information
27. Viamajala, S., McMillan, J. D., Schell, D. J., and Elander, R. T. (2009) Rheology of corn
stover slurries at high solids concentrations - effects of saccharification and particle size.
Bioresource Technology 100 , 925-934.
28. Chesson, A., Gardner, P. T., and Wood, T. J. (1997) Cell wall porosity and available surface
area of wheat straw and wheat grain fractions. Journal of the Science of Food and Agriculture
75 , 289-295.
29. Gardner, P. T., Wood, T. J., Chesson, A., and Stuchbury, T. (1999) Effect of degradation on
the porosity and surface area of forage cell walls of differing lignin content. Journal of the
Science of Food and Agriculture 79 , 11-18.
30. Ishizawa, C. I., Davis, M. F., Schell, D. F., and Johnson, D. K. (2007) Porosity and its effect
on the digestibility of dilute sulfuric acid pretreated corn stover. Journal of Agricultural and
Food Chemistry 55 , 2575-2581.
31. Odriscoll, D., Read, S. M., and Steer, M. W. (1993) Determination of cel wall porosity
by microscopy - walls of cultured-cells and pollen tubes. Acta Botanica Neerlandica 42 ,
237-244.
32. Munoz, I. G., Mowbray, S. L., and Stahlberg, J. (2003) The catalytic module of Cel7D from
Phanerochaete chrysosporium as a chiral selector: structural studies of its complex with the
beta blocker (R)-propranolol. Acta Crystallographica Section D-Biological Crystallography
59 , 637-643.
33. Munoz, I. G., Ubhayasekera, W., Henriksson, H., et al. (2001) Family 7 cellobiohydro-
lases from Phanerochaete chrysosporium: Crystal structure of the catalytic module of Cel7D
(CBH58) at 1.32 angstrom resolution and homology models of the isozymes. Journal of
Molecular Biology 314 , 1097-1111.
34. Berlin, A., Balakshin, M., Gilkes, N., et al. (2006) Inhibition of cellulase, xylanase and
beta-glucosidase activities by softwood lignin preparations. Journal of Biotechnology 125 ,
198-209.
35. Palonen, H., Tjerneld, F., Zacchi, G., and Tenkanen, M. (2004) Adsorption of Trichoderma
reesei CBH I and EG II and their catalytic domains on steam pretreated softwood and isolated
lignin. Journal of Biotechnology 107 , 65-72.
36. Yang, B. and Wyman, C. E. (2006) BSA treatment to enhance enzymatic hydroly-
sis of cellulose in lignin containing substrates. Biotechnology and Bioengineering 94 ,
611-617.
37. Cara, C., Ruiz, E., Ballesteros, I., Negro, M. J., and Castro, E. (2006) Enhanced enzy-
matic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification.
Process Biochemistry 41 , 423-429.
38. Gould, J. M. (1984) Alkaline peroxide delignification of agricultural residues to enhance
enzymatic saccharification. Biotechnology and Bioengineering 26 , 46-52.
39. Kim, S. and Holtzapple, M. T. (2006) Effect of structural features on enzyme digestibility of
corn stover. Bioresource Technology 97 , 583-591.
40. Donohoe, B. S., Decker, S. R., Tucker, M. P., Himmel, M. E., and Vinzant, T. B. (2008)
Visualizing lignin coalescence and migration through maize cell walls following thermochem-
ical pretreatment. Biotechnology and Bioengineering 101 , 913-925.
41. Kallavus, U. and Gravitis, J. (1995) A comparative investigation of the ultrastructure of steam
exploded wood with light, scanning and transmission electron microscopy. Holzforschung 49 ,
182-188.
42. Selig, M. J., Viamajala, S., Decker, S. R., Tucker, M. P., Himmel, M. E., and Vinzant,
T. B. (2007) Deposition of lignin droplets produced during dilute acid pretreatment of maize
stems retards enzymatic hydrolysis of cellulose. Biotechnology Progress 23 , 1333-1339.
43. Zhu, Y., Lee, Y. Y., and Elander, R. T. (2004) Dilute-acid pretreatment of corn stover using a
high-solids percolation reactor. Applied Biochemistry and Biotechnology 117 , 103-114.
44. Esteghlalian, A., Hashimoto, A. G., Fenske, J. J., and Penner, M. H. (1997) Modeling and
optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass.
Bioresource Technology 59 , 129-136.
Search WWH ::




Custom Search