Environmental Engineering Reference
In-Depth Information
7. Knauf, M. and Moniruzzaman, M. (2004) Lignocellulosic biomass processing: A perspective.
International Sugar Journal 106 , 147-150.
8. Schell, D. J., Farmer, J., Newman, M., and McMillan, J. D. (2003) Dilute-sulfuric acid pre-
treatment of corn stover in pilot-scale reactor - Investigation of yields, kinetics, and enzymatic
digestibilities of solids. Applied Biochemistry and Biotechnology 105 , 69-85.
9. Sun, Y. and Cheng, J. Y. (2002) Hydrolysis of lignocellulosic materials for ethanol production:
areview. Bioresource Technology 83 , 1-11.
10. Tucker, M. P., Kim, K. H., Newman, M. M., and Nguyen, Q. A. (2003) Effects of temperature
and moisture on dilute acid steam explosion pretreatment of corn stover and cellulase enzyme
digestibility. Applied Biochemistry and Biotechnology 105 , 165-177.
11. Viamajala, S., Selig, M. J., Vinzant, T. B., et al. (2006) Catalyst transport in corn stover
internodes - Elucidating transport mechanisms using Direct Blue-I. Applied Biochemistry and
Biotechnology 130 , 509-527.
12. Kazi, K. M. F., Jollez, P., and Chornet, E. (1998) Preimpregnation: an important step for
biomass refining processes. Biomass and Bioenergy 15 , 125-141.
13. Kim, K. H., Tucker, M. P., and Nguyen, Q. A. (2002) Effects of pressing lignocellulosic
biomass on sugar yield in two-stage dilute-acid hydrolysis process. Biotechnology Progress
18 , 489-494.
14. Datta, R. (1981) Energy requirements for lignocellulose pretreatment processes. Process
Biochemistry 16 , 16-19.
15. Aden, A., Ruth, M., Ibsen, K., et al. Lignocellulosic biomass to ethanol process design and
economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn
stover. Technical Report NREL/TP-510-32438. Golden, CO: National Renewable Energy
Laboratory; 2002. Report No.: NREL/TP-510-32438.
16. Xiao, Z. Z., Zhang, X., Gregg, D. J., and Saddler, J. N. (2004) Effects of sugar inhibition on
cellulases and beta-glucosidase during enzymatic hydrolysis of softwood substrates. Applied
Biochemistry and Biotechnology 113 , 1115-1126.
17. Holtzapple, M. T., Caram, H. S., and Humphrey, A. E. (1984) Determining the inhibition
constants in the HCH-1 model of cellulose hydrolysis. Biotechnology and Bioengineering 26 ,
753-757.
18. Asenjo, J. A. (1983) Maximizing the formation of glucose in the enzymatic-hydrolysis of
insoluble cellulose. Biotechnology and Bioengineering 25 , 3185-3190.
19. Rao, M., Deshpande, V., Seeta, R., Srinivasan, M. C., and Mishra, C. (1985) Hydrolysis
of sugarcane bagasse by mycelial biomass of Penicillium funiculosum . Biotechnology and
Bioengineering 27 , 1070-1072.
20. Beltrame, P. L., Carniti, P., Focher, B., Marzetti, A., and Sarto, V. (1984) Enzymatic-
hydrolysis of cellulosic materials - a kinetic-study. Biotechnology and Bioengineering 26 ,
1233-1238.
21. Mosolova, T. P., Kalyuzhnyi, S. V., Varfolomeyev, S. D., and Velikodvorskaya, G. A.
(1993) Purification and properties of Clostridium thermocellum endoglucanase-5 produced
in Escherichia coli . Applied Biochemistry and Biotechnology 42 , 9-18.
22. Hodge, D. B., Karim, M. N., Schell, D. J., and McMillan, J. D. (2008) Soluble and insol-
uble solids contributions to high-solids enzymatic hydrolysis of lignocellulose. Bioresource
Technology 99 , 8940-8948.
23. Jorgensen, H., Vibe-Pedersen, J., Larsen, J., and Felby, C.
(2007) Liquefaction of
lignocellulose at high-solids concentrations.
Biotechnology
and
Bioengineering
96 ,
862-870.
24. Coussot, P. (2005) Rheometry of Pastes, Suspensions and Granular Materials - Application
in Industry and Environment. Hoboken, New Jersey: John Wiley & Sons.
25. Switzer, L. H. and Klingenberg, D. J. (2004) Flocculation in simulations of sheared fiber
suspensions. International Journal of Multiphase Flow 30 , 67-87.
26. Stickel, J. J. and Powell, R. L. (2005) Fluid mechanics and rheology of dense suspensions.
Annual Review of Fluid Mechanics 37 , 129-149.
Search WWH ::




Custom Search