Environmental Engineering Reference
In-Depth Information
15. Tanaka K, Komiyama A, Sonomoto K, Ishizaki A, Hall SJ, Stanbury R. Two different path-
ways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient
of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis 10-1.
Applied Microbiology and Biotechnology 2002; 60 (1-2):160-167.
16. Bustos G, Moldes AB, Cruz JM, Dominguez JM. Production of fermentable media from vine-
trimming wastes and bioconversion into lactic acid by Lactobacillus pentosus . Journal of the
Science of Food and Agriculture 2004; 84 (15):2105-2112.
17. Zhu YM, Lee YY, Elander RT. Conversion of aqueous ammonia-treated corn stover to lac-
tic acid by simultaneous saccharification and cofermentation. Applied Biochemistry and
Biotechnology 2007; 137 :721-738.
18. Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol produc-
tion. Biofuels 2007; 108 :41-65.
19. Lloyd TA, Wyman CE. Combined sugar yields for dilute sulfuric acid pretreatment of corn
stover followed by enzymatic hydrolysis of the remaining solids. Bioresource Technology
2005; 96 (18):1967-1977.
20. Li Y, Ruan R, Chen PL et al.. Enzymatic hydrolysis of corn stover pretreated by combined
dilute alkaline treatment and homogenization. Transactions of the ASABE 2004; 47 (3):821-
21. Maas RHW, Bakker RR, Jansen MLA et al. Lactic acid production from lime-treated wheat
straw by Bacillus coagulans : neutralization of acid by fed-batch addition of alkaline substrate.
Applied Microbiology and Biotechnology 2008; 78 (5):751-758.
22. Heitz M, Wu G, Lapointe J, Rubio M. Hydrolytic depolymerization of a steam explosion
lignin. Journal of Wood Chemistry and Technology 1995; 15 (4):515-528.
23. Chandra RP, Bura R, Mabee WE, Berlin A, Pan X, Saddler JN. Substrate pretreatment: The
key to effective enzymatic hydrolysis of lignocellulosics? Biofuels 2007; 108 :67-93.
24. Anuradha R, Suresh AK, Venkatesh KV. Simultaneous saccharification and fermentation of
starch to lactic acid. Process Biochemistry 1999; 35 (3-4):367-375.
25. Cheng P, Mueller RE, Jaeger S, Bajpai R, Iannotti EL. Lactic-acid production from enzyme-
thinned corn starch using Lactobacillus amylovorus . Journal of Industrial Microbiology 1991;
7 (1):27-34.
26. Alfani F, Gallifuoco A, Saporosi A, Spera A, Cantarella M. Comparison of SHF and
SSF processes for the bioconversion of steam-exploded wheat straw. Journal of Industrial
Microbiology & Biotechnology 2000; 25 (4):184-192.
27. Huang LP, Jin B, Lant P, Zhou JT. Simultaneous saccharification and fermentation of potato
starch wastewater to lactic acid by Rhizopus oryzae and Rhizopus arrhizus . Biochemical
Engineering Journal 2005; 23 (3):265-276.
28. Shibata K, Flores DM, Kobayashi G, Sonomoto K. Direct L-lactic acid fermentation with
sago starch by a novel amylolytic lactic acid bacterium, Enterococcus faecium . Enzyme and
Microbial Technology 2007; 41 (1-2):149-155.
29. Yumoto I, Ikeda K. Direct Fermentation of starch to L-(+)-lactic acid using Lactobacillus-
amylophilus . Biotechnology Letters 1995; 17 (5):543-546.
30. Guyot JP, Calderon M, Morlon-Guyot J. Effect of pH control on lactic acid fermentation of
starch by Lactobacillus manihotivorans LMG 18010(T). Journal of Applied Microbiology
2000; 88 (1):176-182.
31. Vishnu C, Seenayya G, Reddy G. Direct fermentation of various pure and crude starchy
substrates to L(+) lactic acid using Lactobacillus amylophilus GV6. World Journal of
Microbiology & Biotechnology 2002; 18 (5):429-433.
32. Narita J, Nakahara S, Fukuda H, Kondo A. Efficient production of L-(+)-lactic acid from
raw starch by Streptococcus bovis 148. Journal of Bioscience and Bioengineering 2004;
97 (6):423-425.
33. Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D. Utilization of molasses sugar for
lactic acid production by Lactobacillus delbrueckii subsp delbrueckii mutant Uc-3 in batch
fermentation. Applied and Environmental Microbiology 2008; 74 (1):333-335.
Search WWH ::

Custom Search