Environmental Engineering Reference
In-Depth Information
18. Oppermann-Sanio, F.B. and Steinbüchel, A. (2002) Occurrence, functions and biosynthe-
sis of polyamides in microorganisms and biotechnological production. Naturwissenschaften
89 ,11
19. Berg, H., Ziegler, K., Piotukh, K., Baier, K., Lockau, W. and Volkmer-Engert, R. (2000)
Biosynthesis of the cyanobacterial reserve polymer Multi-L-arginylpoly-L-aspartic acid
(cyanophycin). Mechanism of the cyanophycin synthetase reaction studied with synthetic
primers. Eur J Biochem 267 , 5561
20. Frey, K.M., Oppermann-Sanio, F.B., Schmidt, H. and Steinbüchel, A. (2002) Technical
scale production of cyanophycin with recombinant strains of Escherichia coli . Appl Environ
Microbiol 68 , 3377-3386
21. Joentgen, W., Groth, T., Steinbüchel, A., Hai, T. and Oppermann, F.B. (1998) Polyaspartic acid
homopolymer and copolymers, biotechnological production and use thereof, WO9839090
22. Scott, E, Peter, F. and Sanders, J. (2007) Biomass in the manufacture of industrial products -
the use of proteins and amino acids. Appl Microbiol Biotechnol 75 , 751-762
23. Mooibroek, H., Oosterhuis, N., Giuseppin, M., Toonen, M., Franssen, H., Scott, E., Sanders,
J. and Steinbüchel, A. (2007) Assessment of technological option and economic feasibility for
cyanophycin biopolymer and high value amino acid production. Appl Microbiol Biotechnol
77 , 257-267
24. Elbahloul, Y., Frey, K., Sanders, J. and Steinbüchel, A. (2005) Protamylasse, a residual com-
pound of industrial starch production, provides a suitable medium for large-scale cyanophycin
production. Appl Environ Microbiol 71 , 7759-7767
25. Simon, R.D. and Weather, P. (1976) Determination of the structure of the novel polypeptide
containing aspartic acid and arginine which is found in cyanobacteria. Biochim Biophys Acta
420 , 165
26. Steinbrecher, R. and Lehning, A. (1996) Characterisation of an isoprene synthase from leaves
of Quercus petraea. Botanica Acta 109 , 216-221
27. Silver, G.M. and Fall, R. (1991) Enzymic synthesis of isoprene from dimethylallyl diphos-
phate in aspen leaf extracts. Plant Physiol 97 , 1588-1591
28. Miller, B., Oschinski, C. and Zimmer, W. (2001) First isolation of an isoprene syn-
thase gene from poplar and successful expression of the gene in Escherichia coli . Planta
213 , 483
29. Weissermel, K. and Arpe, H.J. (1993) Industrial Organic Chemistry. VCH, Weinheim
30. Taeymans, D., Wood, J., Ashby, P., Blank, I., Studer, A., Stadler, R., Gonde, P., Eijck,
P., Lalljie, S., Lingnert, H., Lindblom, M., Matissek, R., Mueller, D., Tallmadge, D., O'Brien,
J., Thompson, S., Silvani, D. and Whitmore, T. (2004) A review of acrylamide: an industry
perspective on research, analysis, formation and control. Food Sci Nutr 44 , 323-347
31. Arisseto, A.P. and Toledo, M.C. de F. (2006) Acrylamide in foods: a review. Braz J Food Tech
9 , 123-134
32. Goekman, V. and Senyuva, H.Z. (2006) A simplified approach for the kinetic characterisa-
tion of acrylamide formation in fructose-asparagine model system. Food Addit Contam 23 ,
348-354
33. Robert, F., Vuataz, G., Pollien, P., Saucy, F., Alonso, M-I., Bauwens, I. and Blank, I. (2004)
Acrylamide formation from asparagine under low moisture reaction conditions. 1. Physical
and chemical aspects in crystalline model systems. J Agri Food Chem 52 , 6837
34. Yaylayan, V.A., Locas, C.P., Wnorowski, A. and O'Brien, J. (2005) Mechanistic pathways of
the formation of acrylamide from different amino acids. Adv Exp Med Biol 561 (Chemistry
and Safety of Acrylamide in Food), 191-203
35. Sohn, M. and Ho, C.-T. (1995) Ammonia generation during thermal degradation of amino
acids. J Agri Food Chem 43 , 3001-3003
36. http://www.brenda.bc.uni-koeln.de
37. Bach, S.J. (1939) The mechanism of urea formation. Biochem J 33 , 1833-1844
38. Albanese, A.A., Irby, V. and Frankston, J.E. (1945) The utilization of D-amino acids by man.
III. Arginine. JBiolChem 160 , 25-30
Search WWH ::




Custom Search