Biomedical Engineering Reference
In-Depth Information
Colthup, N. B., Daly, L. H., and Wiberley, S. E. (1990). Introduction to Infrared and Raman
Spectroscopy . Boston, MA: Academic Press.
Cooper, D. G., Macdonald, C. R., Duff, S. J. B., and Kosaric, N. (1981). Enhanced production
of surfactin from Bacillus subtilis by continuous product removal and metal cation addi-
tions. Applied and Environmental Microbiology , 42 (3), 408-412.
Csavina, J., Landazuri, A., Rheinheimer, P., Saez, A.E., Wonaschutz, A., Rine, K., Barbaris, B.,
Conant, W., and Betterton, E.A. (2011). Metal and metalloid contaminants in atmo-
spheric aerosols from mining operations. Water, Air, and Soil Pollution, 221 (1-4),
145-157.
Dahrazma, B. and Mulligan, C. N. (2007). Investigation of the removal of heavy metals from
sediments using rhamnolipid in a continuous flow configuration. Chemosphere, 69 (5),
705-711. doi: 10.1016/j.chemosphere.2007.05.037.
Dejugnat, C., Diat, O., and Zemb, T. (2011). Surfactin self-assembles into direct and
reverse aggregates in equilibrium and performs selective metal cation extraction.
ChemPhysChem , 12 (11), 2138-2144. doi: 10.1002/cphc.201100094.
Deziel, E., Lepine, F., Milot, S., and Villemur, R. (2003). rhlA is required for the produc-
tion of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa :
3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids.
Microbiology-Sgm , 149 , 2005-2013. doi: 10.1099/mic.0.26154-0.
El Zeftawy, M. A. M. and Mulligan, C. N. (2011). Use of rhamnolipid to remove heavy met-
als from wastewater by micellar-enhanced ultrafiltration (MEUF). Separation and
Purification Technology, 77 (1), 120-127. doi: 10.1016/j.seppur.2010.11.030.
Essington, M. E. (2004). Soil and Water Chemistry: An Integrative Approach . Boca Raton,
FL: CRC Press.
Ferrari, E., Grandi, R., Lazzari, S., and Saladini, M. (2005). Hg(II)-coordination by sugar-acids:
Role of the hydroxy groups. Journal of Inorganic Biochemistry, 99 (12), 2381-2386.
doi: 10.1016/j.jinorgbio.2005.09.005.
Fillipi, B. R., Brant, L. W., Scamehorn, J. F., and Christian, S. D. (1999). Use of micellar-
enhanced ultrafiltration at low surfactant concentrations and with anionic-nonionic sur-
factant mixtures. Journal of Colloid and Interface Science, 213 (1), 68-80. doi: 10.1006/
jcis.1999.6092.
Gao, L., Kano, N., Sato, Y., Li, C., Zhang, S., and Imaizumi, H. (2012). Behavior and dis-
tribution of heavy metals including rare earth elements, thorium, and uranium in
sludge from industry water treatment plant and recovery method of metals by biosur-
factants application. Bioinorganic Chemistry and Applications, 2012 , 173819. doi:
10.1155/2012/173819.
Glick, R., Gilmour, C., Tremblay, J., Satanower, S., Avidan, O., Deziel, E., Greenberg, E. P.,
Poole, K., and Banin, E. (2010). Increase in rhamnolipid synthesis under iron-limiting
conditions influences surface motility and biofilm formation in Pseudomonas aerugi-
nosa . Journal of Bacteriology, 192 (12), 2973-2980. doi: 10.1128/JB.01601-09.
Grangemard, I., Wallach, J., Maget-Dana, R., and Peypoux, F. (2001). Lichenysin—A more
efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology, 90 (3),
199-210. doi: 10.1385/ABAB:90:3:199.
Green, M. K., Gard, E., Bregar, J., and Lebrilla, C. B. (1995). H-D exchange kinetics of alco-
hols and protonated peptides—Effects of structure and proton affinity. Journal of Mass
Spectrometry, 30 (8), 1103-1110. doi: 10.1002/jms.1190300807.
Guerrasantos, L., Kappeli, O., and Fiechter, A. (1984). Pseudomonas aeruginosa biosur-
factant production in continuous culture with glucose as carbon source. Applied and
Environmental Microbiology, 48 (2), 301-305.
Guerrasantos, L., Kappeli, O., and Fiechter, A. (1986). Dependence of Pseudomonas aeru-
ginosa continuous culture biosurfactant production on nutritional and environmental-
factors. Applied Microbiology and Biotechnology, 24 (6), 443-448.
Search WWH ::




Custom Search