Biomedical Engineering Reference
In-Depth Information
Espuny, M.J., Egido, S., Mercade, M.E., and Manresa, A. 1995. Characterization of trehalose
tetraester produced by a waste lubricant oil degrader Rhodococcus sp. Toxicological and
Environmental Chemistry 48:83-88.
Espuny, M.J., Egido, S., Rodón, I., Manresa, A., Mercadé, M.E. 1996. Nutritional requeri-
ments of a biosurfactant producing strain Rodococcus sp. 51T7. Biotechnology Letters
18:521-526.
Franzetti, A., Bestetti, G., Caredda, R., La Colla, P., and Tamburini, E. 2008. Surface active
substances and their role in bacterial access to hydrocarbons in Gordonia strains. FEMS
Microbiology Ecology 63:238-248.
Franzetti, A., Caredda, P., La Colla, P., Pintus, M., Tamburini, E., Papacchini, M., and
Bestetti, G. 2009. Cultural factors affecting biosurfactant production by Gordonia sp.
BS29. International Biodeterioration and Biodegradation 63:943-947.
Franzetti, A., Isabella Gandolfi, I., Bestetti, G., Smyth, T., and Banat, I.M. 2010. Production
and applications of trehalose lipid biosurfactants. European Journal of Lipid Science
and Technology , 112:617-627.
Georgiou, G., Lin, S.C., and Sharma, M.M. 1992. Surface-active compounds from microor-
ganisms. Biotechnology 10:60-65.
Gilleron, M., Stenger, S., Mazorra, Z. et al. 2004. Diacylated sulfoglycolipids are novel
mycobacterial antigens stimulating CD1-restricted T cells during infection with
Mycobacterium tuberculosis . Journal of Experimental Medicine 199:649-659.
Goren, M.B., Brokl, O., Roller, P., Fales, H.M., and Das, B.C. 1976. Sulfatides of Mycobacterium
tuberculosis: The structure of the principal sulfatide (SL-I). Biochemistry 15:2728-2735.
Guiard, J., Collmann, A., Garcia-Alles, L.F., Mourey, L., Brando, T., Mori, L., Gilleron, M.,
Prandi, J., De Libero, G., and Puzo, G. 2009. Fatty acyl structures of Mycobacterium
tuberculosis sulfoglycolipid govern T cell response. Journal of Immunology 182:
7030-7037.
Haddadin, M.S.Y., Arqoub, A.A.A., Reesh, I.A., and Haddadin, J. 2009. Kinetics of hydrocar-
bon extraction from oilshale using biosurfactant producing bacteria. Energy Conversion
and Management 50:983-990.
Hester, A. 2001. Market forecast. Industrial Bioprocess 23:3-4.
Hoq, M.M., Suzutani, T., Toyoda, T., Horiike, G., Yoshida, I., and Azuma, M. 1997. Role of
gamma delta TCR+ lymphocytes in the augmented resistance of trehalose 6,6′-dimyco-
late-treated mice to influenza virus infection. Journal of General Virology 78:1597-1603.
Hunter, R.L., Olsen, M., Jagannath, C., and Actor, J.K. 2006. Trehalose 6,6′-dimycolate and
lipid in the pathogenesis of caseating granulomas of tuberculosis in mice. American
Journal of Patholology 168:1249-1261.
Isoda, H., Kitamoto, D., Shinmoto, H., Matsumura, M., and Nakahara, T. 1997. Microbial
extracellular glycolipid induction of differentiation and inhibition of protein kinase C
activity of human promyelocytic leukaemia cell line HL60. Bioscience, Biotechnology
and Biochemistry 61:609-614.
Ivshina, I.B., Kuyukina, M.S., Philp, J.C., and Christo, N. 1998. Oil desorption from mineral
and organic materials using biosurfactant complexes from Rhodococcus species. World
Journal of Microbiology and Biotechnology 14:711-717.
Kim, J.-S., Powalla, M., Lang, S., Wagner, F., Lunsdorf, H., and Wray, V. 1990. Microbial
glycolipid production under nitrogen limitation and resting cell conditions. Journal of
Biotechnology 13:257-266.
Kitamoto, D., Isoda, H., and Nakahara, T. 2002. Functions and potential applications of glyco-
lipid biosurfactants—From energy saving materials to gene delivery carriers. Journal of
Bioscience Bioengineering 94:187-201.
Kretschmer, A., Bock, H., and Wagner, F. 1982. Chemical and physical characterization of
interfacial-active lipids from rhodococcus erythropolis grown on n-alkanes. Applied and
Environmental Microbiology 44:864-870.
Search WWH ::




Custom Search