Biomedical Engineering Reference
In-Depth Information
U.S. Environmental Protection Agency (EPA). 2001. Pseudomonas chlororaphis strain
63-28 (006478) Fact Sheet, [retrieved on September 30, 2012]. Retrieved from
the internet. http://www.epa.gov/opp00001/chem_search/reg_actions/registration/
fs_PC-006478_01-Apr-01.pdf.
Van Bramer, S. E. 1997. An Introduction to Mass Spectrometry. Lecture notes. Widener
University. Retrived from: http://science.widener.edu/svb/massspec/massspec.pdf
(Accessed on November 2012).
Van Gennip, M., Christensen, L. D., Alhede, M., Phipps, R., Jensen, P. Ø., Christophersen, L.,
and Bjarnsholt, T. 2009. Inactivation of the rhlA gene in Pseudomonas aeruginosa pre-
vents rhamnolipid production, disabling the protection against polymorphonuclear leu-
kocytes. Apmis, 117(7), 537-546.
van Rij, E. T., Wesselink, M., Chin-A-Woeng, T. F., Bloemberg, G. V., and Lugtenberg, B. J. 2004.
Influence of environmental conditions on the production of Phenazine-1-carboxamide
by Pseudomonas chlororaphis PCL1391. Molecular Plant-Microbe Interactions , 17(5),
557-566.
Varnier, A.-L., Sanchez, L., Vatsa, P., Boudesocque, L., Garcia-Brugger, A., Rabenoelina, F.,
Sorokin, A. et al. 2009. Bacterial rhamnolipids are novel MAMPs conferring resistance
to Botrytis cinerea in grapevine. Plant Cell and Environment , 32(2), 178-193.
Vatsa, P., Sanchez, L., Clement, C., Baillieul, F., and Dorey, S. 2010. Rhamnolipid biosurfac-
tants as new players in animal and plant defense against microbes. International Journal
of Molecular Sciences , 11(12), 5096-5109.
Verbeck, G., Ruotolo, B., Sawyer, H., Gillig, K., Russell, D., Ruotolo, G, B., Sawyer, H.,
Gillig, K., and Russell, D. 2002. A fundamental introduction to ion mobility mass spec-
trometry applied to the analysis of biomolecules. Journal of Biomolecular Techniques ,
13(2), 56.
Wang, Q., Fang, X., Bai, B., Liang, X., Shuler, P. J., Goddard III, W. A., and Tang, Y. 2007.
Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recov-
ery. Biotechnology and Bioengineering , 98(4), 842-853.
Wang, S. and Mulligan, C. N. 2009. Rhamnolipid biosurfactant-enhanced soil flushing for the
removal of arsenic and heavy metals from mine tailings. Process Biochemistry , 44(3),
296-301.
Wecke, T., Bauer, T., Harth, H., Maeder, U., and Mascher, T. 2011. The rhamnolipid stress
response of Bacillus subtilis. FEMS Microbiology Letters , 323(2), 113-123.
Wena, J., Staceya, S. P., McLaughlina, M. J., and Kirbyb, J. K. 2009. Biodegradation of rham-
nolipid, EDTA and citric acid in cadmium and zinc contaminated soils. Soil Biology and
Biochemistry , 41(10), 2214-2221.
Wittgens, A., Tiso, T., Arndt, T. T., Wenk, P., Hemmerich, J., Mueller, C., Wichmann, R.
et al. 2011. Growth independent rhamnolipid production from glucose using the non-
pathogenic Pseudomonas putida KT2440. Microbial Cell Factories , 10(1), 80.
Xia, W. J., Dong, H. P., Yu, L., and Yu, D. F. 2011. Comparative study of biosurfactant produced
by microorganisms isolated from formation water of petroleum reservoir. Colloids and
Surfaces A: Physicochemical and Engineering Aspects , 392(1), 124-130.
Zhu, Y., Gan, J. J., Zhang, G. L., Yao, B., Zhu, W. j., and Meng, Q. 2007. Reuse of waste frying
oil for production of rhamnolipids using Pseudomonas aeruginosa zju.u1M. Journal of
Zhejiang University-Science A , 8(9), 1514-1520.
Search WWH ::




Custom Search