Graphics Reference
In-Depth Information
In three dimensions,
( A ( i− 1 ,j,k ) , ( i,j,k ) /E ( i− 1 ,j,k ) ) 2
A ( i,j,k ) , ( i,j,k )
( A ( i,j− 1 ,k ) , ( i,j,k ) /E ( i,j− 1 ,k ) ) 2
( A ( i,j,k− 1) , ( i,j,k ) /E ( i,j,k− 1) ) 2
A ( i− 1 ,j,k ) , ( i,j,k )
×
( A ( i− 1 ,j,k ) , ( i− 1 ,j +1 ,k ) + A ( i− 1 ,j,k ) , ( i− 1 ,j,k +1) ) /E ( i− 1 ,j,k )
E ( i,j,k ) =
A ( i,j− 1 ,k ) , ( i,j,k )
×
( A ( i,j− 1 ,k ) , ( i +1 ,j− 1 ,k ) + A ( i,j− 1 ,k ) , ( i,j− 1 ,k +1) ) /E ( i,j− 1 ,k )
A ( i,j,k− 1) , ( i,j,k )
×
( A ( i,j,k− 1) , ( i +1 ,j,k− 1) + A ( i,j,k− 1) , ( i,j +1 ,k− 1) ) /E ( i,j,k− 1)
If you're curious, the intuition behind MIC (and why it outperforms IC)
lies in a Fourier analysis of the problem. If you decompose the error as
a superposition of Fourier modes, some low frequency (smooth) and some
Set tuning constant τ =0 . 97 and safety constant σ =0 . 25
For i=1 to nx , j=1 to ny , k=1 to nz :
If cell ( i, j, k ) is fluid:
( Aplusi i− 1 ,j,k precon i− 1 ,j,k ) 2
Set e = Adiag i,j,k
precon i,j− 1 ,k ) 2
( Aplusj i,j− 1 ,k
( Aplusk i,j,k− 1 precon i,j,k− 1 ) 2
τ Aplusi i− 1 ,j,k
( Aplusj i− 1 ,j,k
+ Aplusk i− 1 ,j,k )
precon 2
i−
1 ,j,k
+ Aplusj i,j− 1 ,k
( Aplusi i,j− 1 ,k + Aplusk i,j− 1 ,k )
precon i,j− 1 ,k
+ Aplusk i,j,k− 1
( Aplusi i,j,k− 1 + Aplusj i,j,k− 1 )
precon 2
1
i,j,k−
If e<σ Adiag i,j,k ,set e = Adiag i,j,k
precon i,j,k =1 / e
Figure 4.6.
The calculation of the MIC(0) preconditioner in three dimensions.
Search WWH ::




Custom Search