Graphics Reference
In-Depth Information
and the coordinates of the grid x p = pL/n , z q = qL/n :
n/ 2
1
n/ 2 1
h pq =
A ij cos(2 π ( ip + jq ) /n
ω k t + θ ij ) .
(13.11)
i = −n/ 2+1
j = −n/ 2+1
Next we write the cosine in terms of complex exponentials:
n/ 2 1
n/ 2 1
A ij 2 e 1(2 π ( ip + jq ) /n−ω k t + θ ij )
h pq =
i = −n/ 2+1
j = −n/ 2+1
+ 2 e 1(2 π ( ip + jq ) /n−ω k t + θ ij )
n/ 2
1
n/ 2
1
2 e 1( θ ij −ω k t ) A ij e 1(2 π ( ip + jq ) /n )
1
=
i = −n/ 2+1
j = −n/ 2+1
+ 2 e 1( θ ij −ω k t ) A ij e 1(2 π ( −ip−jq ) /n )
(13.12)
Finally we shue terms around in the sum to get
n/ 2
1
n/ 2
1
2 e 1( θ ij −ω k t ) A ij + 2 e 1( θ −i,−j −ω k t ) A −i,−j
h pq =
i = −n/ 2+1
j = −n/ 2+1
e 1(2 π ( ip + jq ) /n )
×
n/ 2 1
n/ 2 1
Y ij ( t ) e 1(2 π ( ip + jq ) /n ) ,
=
i = −n/ 2+1
j = −n/ 2+1
(13.13)
where the complex Fourier coecients Y ij ( t ) are defined as
Y ij ( t )= 2 e 1( θ ij −ω k t ) A ij + 2 e 1( θ −i,−j −ω k t ) A −i,−j
= 2 cos( θ ij
ω k t )+
ω k t ) A ij
1sin( θ ij
+ 2 cos( θ −i,−j
ω k t ) A −i,−j
ω k t )
1sin( θ ij
2 cos( θ ij
ω k t ) A −i,−j
ω k t ) A ij + 2 cos( θ −i,−j
=
ω k t ) A −i,−j
(13.14)
In the last two line it's spelled out in real and imaginary parts. Evaluating
Equation (13.13) is exactly what FFT software is designed to do: all you
need to do is evaluate Y ij ( t )foreach i and j and pass in that 2D array
of Y values, getting back the heights. The results should be real, up to
round-off errors—you can safely ignore the imaginary parts, though a good
+
1 2 sin( θ ij
1
ω k t ) A ij
2 sin( θ −i,−j
Search WWH ::




Custom Search