Agriculture Reference
In-Depth Information
region, particularly where groundwater serves as a water supply for people,
but passage of water through streams, wetlands, and lakes can remove much
of the NO 3 .
Landscapes similar to KBS are common across the upper U.S. Midwest, as well
as in northern Europe. Agricultural row crops, in particular, annual crops that are
heavily fertilized, produce notable effects on water quality that extend through water
flow paths to groundwater, streams, rivers, wetlands, and lakes. The groundwater
flow path introduces a protracted time lag for the movement of contaminants from
the land surface to streams and lakes (Hamilton 2012). Urban and residential devel-
opment further alters water quality in myriad ways, and those effects are superim-
posed on the water-quality patterns described here. The long-term, landscape-level
research described here provides the foundation for understanding natural patterns
in water quality and the influence of agricultural activities on groundwater and sur-
face waters; such an understanding is essential for better management of water and
water quality for human and ecological benefits.
References
Alexander, R. B., J. K. Bohlke, E. W. Boyer, M. B. David, J. W. Harvey, P. J. Mulholland,
S. P. Seitzinger, C. R. Tobias, C. Tonitto, and W. M. Wollheim. 2009. Dynamic model-
ing of nitrogen losses in river networks unravels the coupled effects of hydrological and
biogeochemical processes. Biogeochemistry 93:91-116.
Allen, W.  B., J. S.  Miller, and W. W.  Wood. 1972. Availability of water in Kalamazoo
County, southwestern Michigan. Water Supply Paper 1973, U.S. Geological Survey,
Washington, DC, USA.
Arango, C.  P., and J. L.  Tank. 2008. Land use influences the spatio-temporal controls on
nitrification and denitrification in headwater streams. Journal of the North American
Benthological Society 27:90-107.
Baas, D. G. 2009. Inferring dissolved phosphorus cycling in a TMDL watershed using bio-
geochemistry and mixed linear models. Dissertation, Michigan State University, East
Lansing, Michigan, USA.
Bartholic, J., S. S. Batie, S. Seedang, H. Abbas, S. G. Li, W. Northcott, L. Wang, S. Lacy,
S. A. Miller, J. A. Andresen, M. Kaplowitz, M. Branch, J. Asher, J. Shi, and M. Selman.
2007. Restoring the Great Lakes water through the use of water conservation credits
and integrated water balance analysis system. Institute of Water Research, Michigan
State University, East Lansing, Michigan, USA.
Basu, N. B., S. E. Thompson, and P. S. C. Rao. 2011. Hydrologic and biogeochemical func-
tioning of intensively managed catchments:  a synthesis of top-down analyses. Water
Resources Research 47:W00J15. doi:10.1029/2011WR010800
Beaulieu, J. J., C. P. Arango, S. K. Hamilton, and J. L. Tank. 2008. The production and emis-
sion of nitrous oxide from headwater streams in the Midwestern United States. Global
Change Biology 14:878-894.
Beaulieu, J. J., J. L. Tank, S. K. Hamilton, W. M. Wollheim, R. O. Hall, Jr., P. J. Mulholland,
B. J. Peterson, L. R. Ashkenas, L. W. Cooper, C. N. Dahm, W. K. Dodds, N. B. Grimm,
S. L. Johnson, W. H. Mcdowell, G. C. Poole, H. M. Valett, C. P. Arango, M. J. Bernot,
A. J. Burgin, C. L. Crenshaw, A. M. Helton, L. T. Johnson, J. M. O'Brien, J. D. Potter,
R. W. Sheibley, D. J. Sobota, and S. M. Thomas. 2011. Nitrous oxide emission from
Search WWH ::




Custom Search