Digital Signal Processing Reference
In-Depth Information
[8]
Dinger, R. J., et al., ''Detection of Small Floating Targets on Ocean Surface Using
an Ultra-Wideband 150-700 MHz Impulse Radar,'' Second International Conference
on Ultra-Wideband Short-Pulse Electromagnetics , Brooklyn, NY, April 1994.
[9]
Halman, J. I., K. A. Shubert, and G. T. Ruck, ''SAR Processing of Ground Penetrating
Radar Data for Buried UXO Detection: Results from a Surface-Based System,'' IEEE
Trans. Antennas Propagat ., Vol. AP-46, July 1998, pp. 1023-1027.
[10]
Xu, X., and R. M. Narayanan, ''A Comparative Study of UWB FOPEN Radar Imaging
Using Step-Frequency and Random Noise Waveforms,'' 2000 IEEE Antennas and
Propagation Society International Symposium Digest , Salt Lake City, UT, July 2000,
pp. 1956-1959.
[11]
Deng H., and H. Ling, ''Clutter Reduction for Synthetic Aperture Radar Imagery
Based on Adaptive Wavelet Packet Transform,'' Progress in Electromag. Research ,
Vol. 29, March 2000, pp. 1-23.
[12]
Chen, V. C., and S. Qian, ''Joint Time-Frequency Transform for Radar Range-
Doppler Imaging,'' IEEE Trans. Aerospace and Electronic Systems , Vol. 34, No. 2,
1998, pp. 486-499.
[13]
Sparr, T., S. Hamran, and E. Korsbakken, ''Estimation and Correction of Complex
Target Motion Effects in Inverse Synthetic Aperture Imaging of Aircraft,'' Proc. of
IEEE Intl. Radar Conference , 2000, pp. 457-461.
[14]
Wu, Y., and D. C. Munson, ''Wide-Angle ISAR Passive Imaging Using Smoothed
Pseudo
Wigner-Ville
Distribution,''
Proceedings
of
IEEE
Conference ,
2001,
pp. 363-366.
[15]
Stuff, M. A., ''Three-Dimensional Analysis of Moving Target Radar Signals: Methods
and Implications for ATR and Feature-Aided Tracking,'' SPIE Proc. Algorithms for
Synthetic Aperture Radar Imagery VI , Vol. 3721, 1999, pp. 485-496.
[16]
Li, J., and H. Ling, ''ISAR Motion Detection and Compensation Using Genetic
Algorithms,'' SPIE Proc. on Wavelet Applications VIII , Vol. 4391, 2001, pp. 380-388.
[17]
Barbarossa, S., and A. Farina, ''Detection and Imaging of Moving Objects with
Synthetic Aperture Radar. Part 2: Joint Time-Frequency Analysis by Wigner-Ville
Distribution,'' IEE Proceedings—F , Vol. 139, No. 1, 1992, pp. 89-97.
[18]
Barbarossa, S., ''Analysis of Multicomponent LFM Signals by a Combined Wigner-
Hough Transform,'' IEEE Trans. on Signal Processing , Vol. 43, No. 6, 1995,
pp. 1511-1515.
[19]
Wood, J. C., and D. T. Barry, ''Radon Transformation of Time-Frequency Distribu-
tions for Analysis of Multicomponent Signals,'' IEEE Trans. on Signal Processing ,
Vol. 42, No. 11, 1994, pp. 3166-3177.
[20]
Wood, J. C., and D. T. Barry, ''Radon Transformation of the Wigner Spectrum,''
Proceedings
of
SPIE
on
Advanced
Architectures,
Algorithms
on
Signal
Processing ,
Vol. 1770, 1992, pp. 358-375.
[21]
Namias, V., ''The Fractional Order Fourier Transform and its Application to Quantum
Mechanics,'' Journal of the Institute of Mathematics Applications ., Vol. 25, No. 3, 1980,
pp. 241-265.
[22]
Almeida, L. B., ''The Fractional Fourier Transform and Time-Frequency Representa-
tions,'' IEEE Trans. on Signal Processing , Vol. 42, No. 11, 1994, pp. 3084-3091.
Search WWH ::




Custom Search