Biology Reference
In-Depth Information
calcium's roles and mechanisms of action in cell biology. They have attracted and
challenged some of the best minds in physiology, resulting in great conceptual and
skillful sophistication in the rapid evolution of this technology, which shows little
sign of abating.
Acknowledgments
I thank Steve Adams for valuable discussion and Joseph Kao for drawings of chelator structures.
The research done in my laboratory in this area was supported primarily by National Institutes of
Health Grant NS 15114.
References
Adams, S. R., and Tsien, R. Y. (1993). Controlling cell chemistry with caged compounds. Annu. Rev.
Physiol. 55, 755-784.
Adams, S. R., Kao, J. P. Y., Grynkiewicz, G., Minta, A., and Tsien, R. Y. (1988). Biologically useful
chelators that release Ca 2 þ upon illumination. J. Am. Chem. Soc. 110, 3212-3220.
Adams, S. R., Kao, J. P. Y., and Tsien, R. Y. (1989). Biologically useful chelators that take up Ca 2 þ
upon illumination. J. Am. Chem. Soc. 111, 7957-7968.
Adams, S. R., Lev-Ram, V., and Tsien, R. Y. (1997). A new caged Ca 2 þ , azid-1, is far more photosensi-
tive than nitrobenzyl-based chelators. Chem. Biol. 4, 867-878.
Ashley, C. C., Gri
ths, P. J., Lea, T. J., Mulligan, I. P., Palmer, R. E., and Simnett, S. J. (1991). Use of
fluorescent TnC derivatives and ''caged'' compounds to study cellular Ca 2 þ phenomena. In ''Cellular
Calcium: A Practical Approach,'' (J. G. McCormack, and P. H. Cobbold, eds.), pp. 177-203. Oxford
University Press, New York.
Ashley, C. C., Mulligan, I. P., and Lea, T. J. (1991). Ca 2 þ and activation mechanisms in skeletal muscle.
Q. Rev. Biophys. 24,
Y
1-73.
Ashley, C. C., Lea, T. J., Mulligan, I. P., Palmer, R. E., and Simnett, S. J. (1993). Activation and
relaxation mechanisms in single muscle fibres. Adv. Exp. Med. Biol. 332,
97-114.
Ayer, R. K., Jr., and Zucker, R. S. (1999). Magnesium binding to DM-nitrophen and its e
V
ect on the
3384-3393.
Backx, P. H., O'Rourke, B., and Marban, E. (1991). Flash photolysis of magnesium-DM-nitrophen in
heart cells. A novel approach to probe magnesium- and ATP-dependent regulation of calcium
channels. Am. J. Hypertens. 4, 416S-421S.
Bates, S. E., and Gurney, A. M. (1993). Ca 2 þ -dependent block and potentiation of L-type calcium
current in guinea-pig ventricular myocytes. J. Physiol. (Lond.) 466, 345-365.
Bernardinelli, Y., Haeberli, C., and Chatton, J. Y. (2005). Flash photolysis using a light emitting diode:
An e Y cient, compact, and a V ordable solution. Cell Calcium 37, 565-572.
Beutner, D., Voets, T., Neher, E., and Moser, T. (2001). Calcium dependence of exocytosis and
endocytosis at the cochlear inner hair cell a V erent synapse. Neuron 29, 681-690.
Bollmann, J. H., and Sakmann, B. (2005). Control of synaptic strength and timing by the release-site
Ca 2 þ signal. Nat. Neurosci. 8, 426-434.
Bollmann, J. H., Sakmann, B., and Borst, J. G. (2000). Calcium sensitivity of glutamate release in a
calyx-type terminal. Science 289, 953-957.
Brown, E. B., Shear, J. B., Adams, S. R., Tsien, R. Y., and Webb, W. W. (1999). Photolysis of caged
calcium in femtoliter volumes using two-photon excitation. Biophys. J. 76, 489-499.
Bruns, D., Engert, F., and Lux, H. D. (1993). A fast activating presynaptic reuptake current during
serotonergic transmission in identified neurons of Hirudo. Neuron 10, 559-572.
Buchet, R., Jona, I., and Martonosi, A. (1991). Ca 2 þ release from caged-Ca 2 þ alters the FTIR spectrum
of sarcoplasmic reticulum. Biochim. Biophys. Acta 1069,
photorelease of calcium. Biophys. J. 77,
209-217.
Search WWH ::




Custom Search