Biology Reference
In-Depth Information
Requirement of Ca 2 þ transients for induction of jasmonic acid biosynthesis and PINII gene expres-
sion. Plant Cell Physiol. 45,
456-459.
Furuichi, T., Mori, I. C., Takahashi, K., and Muto, S. (2001). Sugar-induced increase in cytosolic Ca 2 þ
in Arabidopsis thaliana whole plants. Plant Cell Physiol. 42,
1149-1155.
Gerasimenko, O., and Tepikin, A. (2005). How to measure Ca 2 þ in cellular organelles? Cell Calcium 38,
201-211.
George, C. H., Kendall, J. M., Campbell, A. K., and Evans, W. H. (1998). Connexin-aequorin chimerae
report cytoplasmic calcium environments along trafficking pathways leading to gap junction biogen-
esis in living COS-7 cells. J. Biol. Chem. 273, 29822-29829.
Gorokhovatsky, A. Y., Marchenkov, V. V., Rudenko, N. V., Ivashina, T. V., Ksenzenko, V. N.,
Burkhardt, N., Semisotnov, G. V., Vinokurov, L. M., and Alakhov, Y. B. (2004). Fusion of Aequoria
victoria GFP and aequorin provides their Ca 2 þ -induced interaction that results in red shift GFP
absorption and e Y cient bioluminescence energy transfer. Biochem. Biophys. Res. Commun. 320, 703-711.
Grant, M., Brown, I., Adams, S., Knight, M., Ainslie, A., and Mansfield, J. (2000). The RPM1 plant
disease resistant gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary
for the oxidative burst and hypersensitive cell death. Plant J. 23, 441-450.
Greene, V., Cao, H., Schanne, F. A. X., and Bartelt, D. C. (2002). Oxidative stress-induced calcium
signalling in Aspergillus nidulans. Cell. Signal. 14, 437-443.
Griesbeck, O., Baird, G. S., Campbell, R. E., Zacharias, D. A., and Tsien, R. Y. (2001). Reducing the
environmental sensitivity of yellow fluorescent protein mechanism and applications. J. Biol. Chem.
276, 29188-29194.
Hell, S. W. (2007). Far-field optical nanoscopy. Science 316, 1153-1158.
Herbaud, M. L., Guiseppi, A., Denizot, F., Haiech, J., and Kilho V er, M. C. (1998). Calcium signalling
in Bacillus subtilis. Biochim. Biophys. Acta 1448, 212-226.
Higashijima, S., Okamoto, H., Ueno, N., Hotta, Y., and Eguchi, G. (1997). High-frequency generation
of transgenic zebrafish which reliably express GFP in whole muscles or the whole body by using
promoters of zebrafish origin. Dev. Biol. 192,
289-299.
Ikawa, M., Tanaka, N., Kao, W. W., and Verma, I. M. (2003). Generation of transgenic mice using
lentiviral vectors: a novel preclinical assessment of lentiviral vectors for gene therapy. Mol. Ther. 8,
666-673.
Inoue, S., Sugiura, S., Kakoi, H., and Hasizume, K. (1975). Squid bioluminescence. II. Isolation from
Watasenia scintillans and synthesis of 2-(p-hydroxybenzyl)-6-(p-hydroxyphenyl)-3, 7-dihydroimidazo
[1, 2-a]pyrazin-3-one. Chem. Lett. 4,
141-144.
Inouye, S. (2008). Cloning, expression, purification and characterization of an isotype of clytin, a
calcium-binding photoprotein from the luminous hydromedusa Clytia gregarium. J. Biochem. 143,
711-717.
Inouye, S., and Sahara, Y. (2009). Expression and purification of the calcium binding photoprotein
mitrocomin using ZZ-domain as a soluble partner in E. coli cells. Protein Expr. Purif. 66, 52-57.
Inouye, S., Aoyama, S., Miyata, T., Tsuji, F. I., and Sakaki, Y. (1989). Overexpression and purification
of the recombinant Ca 2 þ -binding protein, apoaequorin. J. Biochem. 105, 473-477.
Ishii, K., Hirose, K., Iino, M. (2006). Ca 2+ shuttling between endoplasmic reticulum and mitochondria
underlying Ca 2+ oscillations. EMBO Rep. 7, 390-396.
Jones, K., Hibbert, F., and Keenan, M. (1999). Glowing jellyfish, luminescence and a molecule called
coelenterazine. Trends Biotechnol. 17, 477-481.
Jung, D. W., Bradshaw, P. C., Litsky, M., and Pfei V er, D. R. (2004). Ca 2 þ transport in mitochondria
from yeast expressing recombinant aequorin. Anal. Biochem. 324, 258-268.
Karplus, E. (2006). Advances in instrumentation for detecting low-level bioluminescence and fluores-
cence. In ''Photoproteins in Bioanalysis,'' (S. Daunert, and S. Deo, eds.), pp. 199-223. Wiley-VCH,
Weinheim, Germany.
Kendall, J. M., Badminton, M. N., Dormer, R. L., and Campbell, A. K. (1994). Changes in free calcium
in the endoplasmic reticulum of living cells detected using targeted aequorin. Anal. Biochem. 221,
173-181.
Search WWH ::




Custom Search