Civil Engineering Reference
In-Depth Information
t
3
! 2
:
:
14 210
5000
13 3
14
5000
76766576 10 15
195,910 10 4
M cr ¼ 1
:
4
:
p
+ 210 195,910 10 4
81 25,139,840
00070964
p
624502122 10 23 +8
377673439 10 20
M cr ¼ 0
:
1
:
:
M cr ¼ 286,757,770Nmm ¼ 286,758 kNm
We can now check the safety against lateral torsional buckling following
the rules specified in EC3 [1.27, 2.11] as follows:
M Ed
M b , Rd 1
:
0
Given: M Ed ¼ 24,026 kN m and W y ¼ 118,330 cm 3
f y
g M1
M b , Rd ¼w LT W y
s
W y f y
M cr
r
32,541
286,758
l LT ¼
¼
¼ 0 : 337
h
i
+ l LT
l LT 0
F LT ¼ 0
:
51+ a LT
:
2
¼ 0
337 2
¼ 0
:
51+0
:
76 0
ð
:
337 0
:
2
Þ +0
:
:
609
1
q
F LT l LT
w LT ¼
but w LT 1
:
0
F LT +
1
609 +
p
w LT ¼
but w LT 1
:
0
609 2
337 2
0
:
0
:
0
:
w LT ¼ 0
:
896
0
:
896 32,541
1
M b , Rd ¼
¼ 29,156
:
7kNm
>
24,032 kNm
:
0
4.2.7 Design of Web Stiffeners
There are two types of stiffeners used to strengthen the thin web plate of
the main plate girder against buckling due to shear stresses, bending stresses,
or both. The stiffeners at the supports are commonly known as load bearing
stiffeners, while intermediate stiffeners are commonly known as stability
stiffeners (intermediate transverse stiffeners). The design of the stiffeners
can be performed as follows:
Search WWH ::




Custom Search