Environmental Engineering Reference
In-Depth Information
the bacterial community using functional gene probes. The availability of genome
sequences and genetic systems for additional micro-organisms (other than Geobacter,
Shewanella and Desulfovibrio spp.) will also help better understand their role in the
biogeochemical cycling of radionuclides.
Acknowledgements
The authors acknowledge the financial support of NERC (Grants NE/D00473X/1 and NE/
D005361/1) and access to beam time at Daresbury SRS via STFC funding.
References
Akob, D. M., Mills, H. J. and Kostka, J. E. (2007)
Metabolically active microbial
communities in uranium contaminated
subsurface sediments. FEMS Microbiology
Ecology 59, 95 107.
Anderson, R. T., Vrionis, H. A., Ortiz Bernad, I.
et al. (2003) Stimulating the in situ activity of
Geobacter species to remove uranium from
the groundwater of a uranium
contaminated aquifer. Applied and
Environmental Microbiology 69, 5884 5891.
Beazley, M. J., Martinez, R. J., Sobecky, P. A.,
Webb, S. M. and Taillefert, M. (2007)
Uranium biomineralization as a result of
bacterial phosphatase activity: insights
from bacterial isolates from a
contaminated subsurface. Environmental
Science and Technology 41, 5701 5707.
Begg, J. D., Burke, I. T. and Morris, K. (2007) The
behaviour of technetium during microbial
reduction in amended soils from Dounreay,
UK. The Science of the Total Environment 373,
297 304.
Boukhalfa, H., Icopini, G. A., Reilly, S. D. and
Neu, M. P. (2007) Plutonium(IV) reduction
by the metal reducing bacteria Geobacter
metallireducens GS15 and Shewanella oneidensis
MR1. Applied and Environmental Microbiology
73, 5897 5903.
Brodie, E. L., Desantis, T. Z., Joyner, D. C. et al.
(2006) Application of a high density
oligonucleotide microarray approach to
study bacterial population dynamics
during uranium reduction and reoxidation.
Applied and Environmental Microbiology 72,
6288 6298.
Burke, I. T., Boothman, C., Lloyd, J. R. et al. (2006)
Reoxidation behavior of technetium, iron,
and sulfur in estuarine sediments.
Environmental Science and Technology 40,
3529 3535.
Burke, I. T., Boothman, C., Lloyd, J. R., Mortimer,
R. J., Livens, F. R. and Morris, K. (2005) Effects
of progressive anoxia on the solubility of
technetium in sediments. Environmental
Science and Technology 39, 4109 4116.
Cummings, D. E., Caccavo, F., Spring, S. and
Rosenzweig, R. F. (1999) Ferribacterium
limneticum, gen. nov., sp. nov., an
Fe(III) reducing micro organism isolated
from mining impacted freshwater lake
sediments. Archives of Microbiology 171,
183 188.
Finneran, K. T., Housewright, M. E. and
Lovley, D. R. (2002) Multiple influences of
nitrate on uranium solubility during
bioremediation of uranium contaminated
subsurface sediments. Environmental
Microbiology 4, 510 516.
Finneran, K. T., Johnsen, C. V. and Lovley, D. R.
(2003) Rhodoferax ferrireducens sp. nov., a
psychrotolerant, facultatively anaerobic
bacterium that oxidizes acetate with the
reduction of Fe(III). International Journal of
Systematic and Evolutionary Microbiology 53,
669 673.
Fomina, M., Charnock, J. M., Hillier, S.,
Alavarez, R. and Gadd, G. M. (2007) Fungal
transformations of uranium oxides.
Environmental Microbiology 9, 1696 1710.
Francis, A. J., Dodge, C. J., Lu, F. L., Halada, G. P.
and Clayton, C. R. (1994) XPS and XANES
studies of uranium reduction by
Search WWH ::




Custom Search