Agriculture Reference
In-Depth Information
Raasi S, Varadan R, Fushman D, Pickart CM (2005) Diverse polyubiquitin interaction properties
of ubiquitin-associated domains. Nat Struct Mol Biol 12:708-714
Rabinowitz JD, White E (2010) Autophagy and metabolism. Science 330:1344-1348
Rojas-Triana M, Bustos R, Espinosa-Ruiz A, Prat S, Paz-Ares J, Rubio V (2013) Roles of
ubiquitination in the control of phosphate starvation responses in plants(f). J Integr Plant
Biol 55:40-53
Rose TL, Bonneau L, Der C, Marty-Mazars D, Marty F (2006) Starvation-induced expression of
autophagy-related genes in Arabidopsis . Biol Cell 98:53-67
Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146:682-695
Sadanandom A, Bailey M, Ewan R, Lee J, Nelis S (2012) The ubiquitin-proteasome system:
central modifier of plant signalling. New Phytol 196:13-28
Salminen A, Kaarniranta K, Haapasalo A, Hiltunen M, Soininen H, Alafuzoff I (2012) Emerging
role of p62/sequestosome-1 in the pathogenesis of Alzheimer ' s disease. Prog Neurobiol
96:87-95
Sanz L, Diaz-Meco MT, Nakano H, Moscat J (2000) The atypical PKC-interacting protein p62
channels NF-kappaB activation by the IL-1-TRAF6 pathway. EMBO J 19:1576-1586
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z (2007) Reactive oxygen species are
essential for autophagy and specifically regulate the activity of Atg4. EMBO J 26:1749-1760
Schreiber A, Peter M (2013) Substrate recognition in selective autophagy and the ubiquitin-
proteasome system. Biochim Biophys Acta. doi: 10.1016/j.bbamcr.2013.03.019 [Epub ahead
of print]
Seibenhener ML, Babu JR, Geetha T, Wong HC, Krishna NR, Wooten MW (2004) Sequestosome
1/p62 is a polyubiquitin chain binding protein involved in ubiquitin proteasome degradation.
Mol Cell Biol 24:8055-8068
Shabek N, Herman-Bachinsky Y, Buchsbaum S, Lewinson O, Haj-Yahya M, Hejjaoui M, Lashuel
HA, Sommer T, Brik A, Ciechanover A (2012) The size of the proteasomal substrate deter-
mines whether its degradation will be mediated by mono- or polyubiquitylation. Mol Cell
48:87-97
Slavikova S, Ufaz S, Avin-Wittenberg T, Levanony H, Galili G (2008) An autophagy-associated
Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and
abiotic stresses. J Exp Bot 59:4029-4043
Sullivan JA, Shirasu K, Deng XW (2003) The diverse roles of ubiquitin and the 26S proteasome in
the life of plants. Nat Rev Genet 4:948-958
Sumimoto H, Kamakura S, Ito T (2007) Structure and function of the PB1 domain, a protein
interaction module conserved in animals, fungi, amoebas, and plants. Sci STKE 2007:re6
Suttangkakul A, Li F, Chung T, Vierstra RD (2011) The ATG1/ATG13 protein kinase complex is
both a regulator and a target of autophagic recycling in Arabidopsis . Plant Cell 23:3761-3779
Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal
structure organization. Genes Cells 12:209-218
Svenning S, Lamark T, Krause K, Johansen T (2011) Plant NBR1 is a selective autophagy
substrate and a functional hybrid of
the mammalian autophagic adapters NBR1 and
p62/SQSTM1. Autophagy 7:993-1010
Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917-935
Thompson AR, Vierstra RD (2005) Autophagic recycling: lessons from yeast help define the
process in plants. Curr Opin Plant Biol 8:165-173
Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in
Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138:2097-
2110
Todde V, Veenhuis M, van der Klei IJ (2009) Autophagy: principles and significance in health and
disease. Biochim Biophys Acta 1792:3-13
Toyooka K, Moriyasu Y, Goto Y, Takeuchi M, Fukuda H, Matsuoka K (2006) Protein aggregates
are transported to vacuoles by a macroautophagic mechanism in nutrient-starved plant cells.
Autophagy 2:96-106
Search WWH ::




Custom Search