Image Processing Reference
In-Depth Information
TABLE 2.1
Direct 2-D DFT=FFT Comparison
Technique
No. of Complex Multiplications
%
Direct computation
N 4
¼
7
:
871947
10 10
100
Row
column decomposition
(1-D DFT)
2N 3
¼
2
:
73154048
10 8
0.4
-
N 2
log 2 ( N ) ¼ 2 : 359296 10 6
Row - column decomposition
(1-D FFT)
0.0035
column
decomposition, we need to compute 2N 1-D DFTs and each 1-D DFT requires N 2
multiplications. Therefore, the total number of complex multiplications needed is
2N N 2
This is called the row
column decomposition technique. With row
-
-
¼
2N 3 . Now, if we use row
column decomposition with fast Fourier
transform (FFT) algorithm, the total number of multiplications will be reduced to
2N
-
2
log 2 ( N ) ¼ N 2
log 2 ( N )
. This is due to the fact that the total number of
multiplications necessary to compute N-point FFT is 2
. To see the compu-
tational advantage of using FFT for 2-D DFT computation, consider calculating the
2-D DFT of a 512
log 2 ( N )
512 image using direct computation, row
column decompos-
-
ition and row
column decomposition with the FFT algorithm replacing direct DFT
computation. The comparison is shown in Table 2.1.
-
Properties of 2-D DFT
The properties of 2-D DFT are listed below. The proofs are left as an exercise.
2 - D DFT
2 - D DFT F 2 ( k, l )
!
!
a. Linearity property:Iff 1 ( n, m )
F 1 ( k, l )
and f 2 ( n, m )
,
then
2 - D DFT
!
af 1 ( n, m ) þ bf 2 ( n, m )
aF 1 ( k, l ) þ bF 2 ( k, l )
(
2
:
61
)
b. Conjugation property:Iff ( n, m )
is a real sequence, then its DFT F ( k, l )
satis
es the following conjugation property
F ( k, l ) ¼ F*
( N k, M l )
(
2
:
62
)
This means that half of the DFT data is redundant data.
2 - D DFT F ( k, l )
2 - D DFT F (v
!
!
c. Rotation property: ff ( n, m )
or
f ( r,
u)
,
w)
where
n ¼ r cos u
,
m ¼ r sin u
,
k ¼ v cos w
,
l ¼ v sin w
Search WWH ::




Custom Search