Image Processing Reference
In-Depth Information
or
2
4
3
5
5) k1 P
k
1
25) k1 P
k
1
2 n
4 n
4(0
:
3(0
:
X
k
1
0
0
0 w
(k
1
n)Bu(n)
¼
5) k1 P
25) k1 P
k
1
k
1
2 n
4 n
8(0
:
9(0
:
0
0
2
4
3
5
2 k
4 k
5) k1 1
25) k1 1
4(0
:
2
3(0
:
1
1
4
¼
2 k
4 k
5) k1 1
25) k1 1
8(0
:
2
3(0
:
1
1
4
"
#
"
#
5) k1
25) k1
5) k
25) k
4(0
:
þ
4
þ
(0
:
4
8(0
:
þ
4(0
:
¼
¼
5) k1
25) k1
5) k
25) k
8(0
:
þ
12
þ
(0
:
12
16(0
:
þ
4(0
:
The total system response is the sum of zero-state and zero-input responses.
Therefore, we have
"
#
"
#
þ X
k
1
5) k
25) k
5) k
25) k
4(0
:
3(0
:
4
8(0
:
þ
4(0
:
x(k)
¼w
(k)x(0)
0 w
(k
1
n)Bu(n)
¼
þ
5) k
25) k
5) n
25) k
8(0
:
9(0
:
12
16(0
:
þ
4(0
:
"
#
5) k
25) k
4
4(0
:
þ
(0
:
¼
5) k
25) k
12
8(0
:
5(0
:
The output signal is
5) k
25) k
4
5(0
:
þ
2(0
:
5) k
25) k
y(k)
¼
½
12
x(k)
¼
½
12
¼
28
25(0
:
2(0
:
5) k
25) k
12
10(0
:
2(0
:
4.9 CONTROLLABILITY OF LTI SYSTEMS
In general, a system is controllable if there exists an input that can transfer the
states of the system from an arbitrary initial state to a
finite interval of
time. In this section, we examine the controllability of LTI systems. Since the
results obtained are identical for continuous and discrete-time systems, we only
consider controllability of discrete-time LTI systems [6,7].
final state in a
4.9.1 D EFINITION OF C ONTROLLABILITY
A discrete-time LTI system is said to be controllable at time k 0 if there exists an input
u ( k )
for k k 0 that can transfer the system from any initial state x ( k 0 )
to the origin in
finite number of steps.
Search WWH ::




Custom Search