Image Processing Reference
In-Depth Information
Example 4.6
Consider the following SISO system:
d 3 y(t)
dt 3
5 d 2 y(t)
dt 2
9 d 2 u(t)
dt 2
2 dy(t)
7 du(t)
þ
þ
dt þ
8y ¼
þ
dt þ
13u(t)
(4
:
51)
Obtain a state-space representation of this system in (a) controllable and (b)
observable canonical forms.
S OLUTION
(a) Controllable canonical form:
2
4
3
2
4
3
5
2
4
3
2
4
3
5u(t) and y(t)
2
4
3
5
x 1 (t)
x 2 (t)
x 3 (t)
01 0
001
x 1 (t)
x 2 (t)
x 3 (t)
0
0
1
x 1 (t)
x 2 (t)
x 3 (t)
¼
½
13 7 9
(4
:
52)
8
2
5
(b) Observable canonical form:
2
4
3
5 ¼
2
4
3
5
2
4
3
5 þ
2
4
3
5 u(t) and
2
4
3
5
x 1 (t)
x 2 (t)
x 3 (t)
00
8
x 1 (t)
x 2 (t)
x 3 (t)
13
7
9
x 1 (t)
x 2 (t)
x 3 (t)
10
2
y(t)
¼
½
001
01
5
(4
:
53)
4.4.3 T RANSFER F UNCTION (M ATRIX ) FROM S TATE -S PACE E QUATIONS
The transfer function (matrix) can be derived from state and output equations. For a
SISO system, the transfer function is 1
1 and for a MIMO system with M inputs and
P outputs, the transfer matrix is P M. Let the state equations of a MIMO system be
d x ( t )
d t ¼ Ax ( t ) þ Bu ( t )
(
4
:
54
)
Taking Laplace transform from both sides of Equation 4.54 yields
sX ( s ) ¼ AX ( s ) þ BU ( s )
(
4
:
55
)
Hence,
X ( s ) ¼ ( sI A ) 1 BU ( s )
(
4
:
56
)
The output equation in Laplace transform domain is
Y ( s ) ¼ CX ( s ) þ DU ( s ) ¼ [ C ( sI A ) 1 B þ D ] U ( s )
(
4
:
57
)
Search WWH ::




Custom Search