Image Processing Reference
In-Depth Information
and the residue A 2 corresponding to the second pole is
3) n1
z 2
3 2 (0
0
:
:
3) z n1
3) n
A 2 ¼
(z
0
:
3)
j z¼0:3 ¼
2) ¼
3(0
:
(z
0
:
2)(z
0
:
(0
:
3
0
:
Therefore,
2) n u(n)
3) n u(n)
x(n)
¼ A 1 þ A 2 ¼
2(0
:
þ
3(0
:
(b) Inversion by Power Series Expansion : In this case, we expand X ( z )
as a
power series of z 1 , that is, X ( z ) ¼ P n ¼1 a n z n . The expansion coeffi-
-
cients are x ( n )
is a rational function,
the power series can be obtained using long division as illustrated by the
following example.
, that is, x ( n ) ¼ a n . If the function X ( z )
Example 3.20
z
z
Find the inverse z-transform of the function X(z)
¼
2 using power series
0
:
expansion.
S OLUTION
The power series expansion of X(z)is
z
z
1
2z 1
2) 2 z 2
2) 3 z 3
X(z)
¼
2 ¼
2z 1 ¼
1
þ
0
:
þ
(0
:
þ
(0
:
þ
0
:
1
0
:
Therefore,
¼
2) n u(n)
2) 2
2) 3
2) 4
x(n)
¼
10
:
2(0
:
(0
:
(0
:
(0
:
Example 3.21
Find the inverse z-transform of
z 3
2
:
3z 2
þ
0
:
84z
X(z)
¼
z 3
1
:
4z 2
þ
0
:
63z
0
:
09
S OLUTION
Expanding X(z), we have
z 3
3z 2
2
:
þ
0
:
84z
X(z)
¼
z 3
1
:
4z 2
þ
0
:
63z
0
:
09
9z 1
05z 2
813z 3
5577z 4
¼
1
0
:
þ
1
:
0
:
0
:
þ
Search WWH ::




Custom Search