Image Processing Reference
In-Depth Information
S OLUTION
The characteristic equation 1
75D 1
125D 2
0
:
þ
0
:
¼
0 can be written as
D 2
0
:
75D þ
0
:
125
¼
(D
0
:
5)(D
0
:
25)
¼
0
(3
:
23)
Therefore, the roots are D 1 ¼
0
:
5 and D 2 ¼
0
:
25. The zero-input response is
5) n
25) n
y(n)
¼ C 1 (0
:
þ C 2 (0
:
(3
:
24)
The constants C 1 and C 2 are found by applying the initial conditions
5) 1
25) 1
y(
1)
¼ C 1 (0
:
þ C 2 (0
:
¼
2C 1 þ
4C 2 ¼
1
(3
:
25)
5) 2
25) 2
y(
2)
¼ C 1 (0
:
þ C 2 (0
:
¼
4C 1 þ
16C 2 ¼
1
(3
:
26)
The solutions are C 1 ¼
1
:
25 and C 2 ¼
0
:
375. Therefore,
5) n
25) n
y(n)
¼
1
:
25(0
:
þ
0
:
375(0
:
n
2
(3
:
27)
Next, we consider the homogenous solution. The homogenous solution is found
by driving the system with an input but zero initial conditions. The homogenous
solution is similar to input signal; for example, if the input is an exponential function,
the response will be exponential, if the input is a sinusoid, the output is also a sinusoid.
Example 3.9
Consider the following second-order DE:
y(n)
¼
0
:
75y(n
1)
0
:
125y(n
2)
þ u(n)
(3
:
28)
4) n
Find the output signal y(n) if the input signal is u(n)
¼
2(0
:
for n
0. Assume
zero initial conditions, that is, let y(
2)
¼ y(
1)
¼
0.
S OLUTION
Since the input is an exponential function, the homogenous solution will be
another exponential, that is,
4) n
y h (n)
¼ A(0
:
(3
:
29)
Substituting Equation 3.29 into Equation 3.28 yields
4) n
4) n1
4) n2
4) n
A(0
:
¼
0
:
75A(0
:
0
:
125A(0
:
þ
2(0
:
(3
:
30)
Simplifying the right side of Equation 3.30, we have
4) n
4) 1 A
4) 2 A þ
4) n
A(0
:
¼
[0
:
75(0
:
0
:
125(0
:
2](0
:
(3
:
31)
Search WWH ::




Custom Search