Image Processing Reference
In-Depth Information
Using the initial conditions, we have
1
s þ
(s 2
þ
3s þ
2)Y(s)
þ s
1
¼
4
Therefore,
s 2
3s þ
5
Y(s)
¼
(s þ
4)(s 2
þ
3s þ
2)
Using partial-fraction expansion, we have
s 2
3s þ
5
s 2
3s þ
5
Y(s)
¼
2) ¼
(s þ
4)(s 2
þ
3s þ
(s þ
4)(s þ
1)(s þ
2)
A 1
s þ
A 2
s þ
A 3
s þ
Y(s)
¼
1 þ
2 þ
4
The residues A 1 , A 2 , and A 3 are computed as
¼ s 2
3s þ
5
7
3
A 1 ¼
lim
s!
1 (s þ
1)Y(s)
4) ¼
(s þ
2)(s þ
¼ s 2
3s þ
5
7
2
A 2 ¼
lim
s!
(s þ
2)Y(s)
4) ¼
(s þ
1)(s þ
2
¼ s 2
3s þ
5
1
6
A 3 ¼
lim
s!
4 (s þ
4)Y(s)
2) ¼
(s þ
1)(s þ
Therefore,
u(t)
y(t)
¼
7
3 e t
7
2 e 2t
þ
1
6 e 4t
3.4 GENERAL LINEAR DISCRETE-TIME SYSTEMS
Consider a SISO discrete-time system with input u ( n )
and output y ( n )
that can be
represented by DE of the form
X
X
N
M
y ( n ) ¼
a i y ( n i ) þ
b i u ( n i )
(
3
:
15
)
i ¼
1
i ¼
0
This de
cients DE. This equation describes a
general LTI discrete-time system. This system can be analyzed in time domain or
in transform domain using z-transform. In the next section, we solve the DE in time
domain. The theory of z-transform with its properties and inverse z -
nes an Nth-order constant-coef
transform are
covered in the subsequent sections.
Search WWH ::




Custom Search