Image Processing Reference
In-Depth Information
TABLE 3.2
Properties of the Laplace Transform
Property
L
x ( t ) !
X ( s )
L
y ( t ) !
Y ( s )
L
Linearity
ax ( t ) þ by ( t ) !
aX ( s ) þ bY ( s )
d x ( t )
d t !
L
Differentiation (first derivative)
sX ( s ) x ( 0 )
2
d
x ( t )
d t 2
L
s 2 X ( s ) sx ( 0 ) x 0 ( 0 )
Differentiation (second derivative)
!
d X ( s )
d s
L
tx ( t ) !
Multiplication by t
L
e st 0 X ( s )
Shift
x ( t t 0 ) !
n !
( s þ a )
L
t n e at u ( t ) !
Multiplication by t n
n þ 1
1
j a j
s
a
L
Scaling
x ( at ) !
X
ð
t
L X ( s )
s
Integration
x (t)dt !
0
L
Convolution
x ( t ) * y ( t ) !
X ( s ) Y ( s )
Note that m 1 þ m 2 þþ m Q ¼ N. Assuming that N > M, partial fraction of
X ( s )
yields
A 1
s p 1 þ
A 2
( s p 1 )
A m 1
( s p 1 )
X ( s ) ¼
2 þþ
m 1
B 1
s p 2 þ
B 2
( s p 2 )
B m 2
( s p 2 )
þ
2 þþ
þ
(
:
)
3
12
m 2
The residues A 1 , A 2 , ... , A m 1 corresponding to the pole p 1 are computed using
k m i
d z k m i ( s p 1 )
A k ¼ d
m 1 X ( s )j s ¼ p 1
k ¼ m i , m i 1 ,
...
,2,1
(
3
:
13
)
Similarly, the other set of residues corresponding to other poles are computed. Once
the partial fraction is completed, the time-domain function x ( t )
is
þ A 2 te p 1 t
1
! þ A 3 t 2 e p 1 t
t m 1 1 e p 1 t
( m 1
x ( t ) ¼ A 1 e p 1 t
! þþ A m 1
2
1
)!
t m 2 1 e p 2 t
( m 2
þ B 2 te p 2 t
1
! þ B 3 t 2 e p 2 t
B 1 e p 2 t
þ
! þþ B m 2
þ
(
3
:
14
)
2
1
)!
Search WWH ::




Custom Search