Digital Signal Processing Reference
In-Depth Information
[178] Chisholm, J.S.R., Genz, A.C., and Pusterla, M., A method for
computing Feynman amplitudes with branch cuts, J. Comput. Appl.
Math., 2, 73 - 76, 1976.
[179] Claverie, P., Denis, A., and Yeramian, E., The representation of
functions through the combined use of integral transforms and Pade
approximants - PadeLaplace analysis of functions as sums of
exponentials, Comput. Phys. Rep., 9, 249 - 299, 1989.
[180] Feldman P., and Freund, R., E cient linear circuit analysis by Pade
approximation via the Lanczos process, IEEE Trans. Computer-Aided
Design Integr. Circuits Syst., 14, 639 - 649, 1995.
[181] Freund, R, and Feldman, P., Structurepreserving model order
reduction of RCL circuit equations, IEEE Trans. Circuits Syst. Anal.
Digit. Sign. Process., 43, 577 - 585, 1996.
[182] Levin, D., and Sidi, A., Extrapolation methods for infinite multiple
series and integrals, J. Comp. Meth. Sci. Eng., 1, 167 - 184, 2001.
[183] Barone, P., and March, R., A novel class of Pade based methods in
spectral analysis, J. Comp. Meth. Sci. Eng., 1, 185 - 211, 2001.
[184] Alejos, O., de Francisco, C., Munoz, J.M., HernandezGomez, P., and
Torres, C., Overcoming noise sources in multiexponential fitting: A
comparison of different algorithms, J. Comp. Meth. Sci. Eng., 1, 213 -
228, 2001.
[185] Grotendorst, J., Maple programs for converting series expansions to
rational functions using the Levin transformation - automatic
generation of Fortran functions for numerical applications, Comput.
Phys. Commun., 55, 325 - 335, 1989.
[186] Grotendorst, J., Approximating functions by means of symbolic
computation and a general extrapolation method, Comput. Phys.
Commun., 59, 289 - 301, 1990.
[187] Grotendorst, J., A Maple package for transforming series, sequences
and functions, Comput. Phys. Commun., 67, 325 - 342, 1991.
[188] Driscoll, T.A., and Fornberg, B., A Padebased algorithm for
overcoming the Gibbs phenomenon, Num. Algor., 26, 77 - 92, 2001.
[189] Neuhauser, D., The application of optical potentials for reactive
scattering - a case study, J. Chem. Phys., 93, 2611 - 2616, 1990.
[190] Wall, M.R., and Neuhauser, D., Extraction, through filter
diagonalization, of general quantum eigenvalues or classical normal
mode frequencies from a small number of residues or a short time
segment of a signal: I. Theory and application to a quantum dynamics
model, J. Chem. Phys., 102, 8011 - 8022, 1995.
Search WWH ::




Custom Search