Digital Signal Processing Reference
In-Depth Information
to the genuine (respectively, spurious) resonances. Hence, for genuine reso
nances, i.e., k∈K
F , i.e., k = k
G (which automatically implies that k /∈K
for k ∈K
F ), the genuine amplitudes can be obtained from (5.26) via
K T
(z ± k,Q
−z ± r,P )
= p ± K
q ± K
r=1
d ± k
(5.27)
K T
(z ± k,Q
−z ± s,Q )
s=1,s=k
8
<
9
=
K G +K F
K G
(z ± k,Q
−z ± r ,P )
(z ± k,Q
−z ± r,P )
= p ± K
q ± K
r =K G +1,r =k
r=1
k∈K G .
:
;
K G
K G +K F
(z ± k,Q
−z ± s,Q )
(z ± k,Q
−z ± s ,Q )
s=1,s=k
s =K G +1,s =k
r ,s ∈K F
In (5.27), the rational polynomial in the curly brackets is equal to unity,
because of the coincidence of the constituent polynomials in the numerators,
K G +K F
K G +K F
r =K G +1,r =k (z ± k,Q
−z ± r ,P ) and denominators,
s =K G +1,s =k (z ± k,Q
−z ± s ,Q ).
This maps (5.27) into the form
K G
(z ± k,Q
−z ± r,P )
= p ± K
q ± K
d ± k
r=1
k∈K G
(genuine).
(5.28)
K G
(z ± k,Q
−z ± s,Q )
s=1,s=k
Similarly, for k∈K
F , the Froissart or spurious amplitudes are identified from
(5.26) as
K T
(z ± k,Q
−z ± r,P )
= p ± K
q ± K
r=1
d ± k
(5.29)
K T
(z ± k,Q
−z ± s,Q )
s=1,s=k
8
<
9
=
K G +K F
K G
(z ± k,Q
−z ± r ,P )
(z ± k,Q
−z ± r,P )
= p ± K
q ± K
r =K G +1,r =k
r=1
k∈K F .
:
;
K G
K G +K F
(z ± k,Q
−z ± s,Q )
(z ± k,Q
−z ± s ,Q )
s =K G +1,s =k
s=1,s=k
r ,s ∈K F
The polynomial quotients in the curly brackets from (5.29) are equal to
zero. This is due to the fact that the corresponding numerator polynomials
Search WWH ::




Custom Search