Digital Signal Processing Reference
In-Depth Information
4.8 The Lanczos algorithm for continued fractions
Employing (4.22), the infinite and the m th order delayed continued fractions
G CF(s) (u) and G CF(s)
(u) from (4.17) and (4.18) become, respectively
m
q (s)
1
1
e (s)
1
u −· · ·−
q (s)
e (s)
G CF(s) (u) = c s
r
1
r
u −· · ·
(4.51)
u
q (s)
1
1
e (s)
1
u −· · ·−
q (s)
e (s m
u .
(u) = c s
m
1
G CF(s)
m
(4.52)
u
Similarly, the infinite and the m th order of the even part of the associated
Lanczos continued fractions (LCF) can be introduced as
q (s 1 e (s)
q (s r e (s)
c s
u−q (s)
1
r
G LCF(s)
e
1
(u) =
−e (s 0
−e (s 1 −· · ·−
−e (s r −· · ·
u−q (s)
2
u−q (s)
r+1
(s 1 ] 2
u−α (s 1 −· · ·−
(s r ] 2
u−α (s)
c s
u−α (s 0
=
(4.53)
−· · ·
r
q (s 1 e (s)
q (s m e (s m
u−q (s)
m+1
c s
u−q (s)
1
G LCF(s)
e,m
1
(u) =
−e (s 0
−e (s 1 −· · ·−
u−q (s)
2
−e (s m
(s 1 ] 2
u−α (s 1 −· · ·−
(s m ] 2
u−α (s m
c s
u−α (s 0
=
.
(4.54)
A detailed derivation [5] shows that there is a general relationship between
G LCF(s)
(u) and G CF(s)
(u) which by reference to (4.19) can be written as
e,m
m
(u) = G CF(s)
2n
G LCF(s)
e,n
(u) = G CCF(s)
e,n
(u).
(4.55)
There exists also the infiniteorder and the m th order odd part of (4.51) that
are labeled by G LCF(s)
(u) and G LCF(s)
(u), respectively
o
o,m
(u) = c s
u
G LCF(s)
o
1 +
q (s r e (s)
q (s)
1
u−q (s)
1
q (s 2 e (s)
r−1
1
×
−e (s 1
−e (s 2 −· · ·−
−e (s r −· · ·
u−q (s)
2
u−q (s)
r
(4.56)
1
u
G LCF(s)
o,m
(u) =
c s +
q (s 2 e (s)
q (s m e (s m−1
u−q (s)
c s+1
u−q (s)
1
1
×
−· · ·−
−e (s)
1
u−q (s)
2
−e (s)
2
−e (s m
m
(s+1 1 ] 2
u−α (s+1)
1
(s+1)
m−1 ] 2
u−α (s+1)
m−1
1
u
c s+1
u−α (s+1)
0
=
c s +
(4.57)
−· · ·−
Search WWH ::




Custom Search