Environmental Engineering Reference
In-Depth Information
58. Popov, I., Yu, Chivilikhin, S. A., & Gusarov, V. V., Model of the structured liquid through
the nanotube: http://rusnanotech09.rusnanoforum.ru/Public/ La rge Docs/theses/rus/post-
er/04/Chivilikhin.pdf.
59. Ou, J., Perot, J. B., & Rothstein, J. P.,Laminar drag reduction in microchannels using ultra-
hydrophobic surfaces. Physics of Fluids , (2004), V. 16, p. 4635-4643.
60. Ou, J., &Perot, J. B.,Drag Reduction and μ-PIV Measurements of the Flow Past Ultrahy-
drophobic Surfaces. Physics of Fluids , (2005), V. 17, p. 103606.
61. Press release on the website of the University of Wisconsin-Madison. Models present new
view of nanoscale friction, 25.02.2009.
62. Proskurovskaya, L. T., Physical and chemical properties of electroexplosive ultrafine alu-
minum powders: Dis. Ph. D., Tomsk, (1988), 155 p.
63. Ramazanova, E. E., Shabanov, A. L., & Nagiyev, F. B., Perspectives of nanotechnology
method applications for intensification oil-gas production. Collection of thesis Interna-
tional workshop “Electricity Generation and emission trading in South Eastern Europe”.
Sofia, Bulgaria, 21 September, (2007).
64. Rothstein, J. P., &McKinley, G. H., J. Non-NewtonianFluidMech, (1999), 86, 61-88.
65. Semwogerere,D., Morris,J. F., &Weeks,E. R., J. FluidMech . (2007), 581, 437-451.
66. Skoulidas, A. I., Ackerman, D. M., Johnson, J. K.,& Sholl, D. S., Phys. ReV. Lett . (2002),
89, 185901.
67. Sokhan, V. P., Nicholson, D., Quirke, N. J., Chem. Phys . ( 2002), 117,8531-8539.
68. Sorokin, V. S., Variational method in the theory of convection. Applied Mathematics and
Mechanics . Volume XVII, (1953), p. 39-48.
69. Stepin, B. D., & Tsvetkov, A. A., Inorganic Chemistry. Moscow: Higher School, (1994),
608 p.
70. Suetin, M. V., & Vakhrushev, A. V., Molecular dynamics simulation of adsorption and
desorption of methane storage managed nanocapsules. “All-Russian Conference with in-
ternational participation the Internet “From nanostructures, nanomaterials and nanotech-
nologies for nanotechnology “, Izhevsk , 08/04/2009, p. 112.
71. Sunyaev, Z. I., Sunyaev, R. Z., & Safiyeva, R. Z., Oil dispersions systems. M.: Chemistry ,
(1990).
72. Tienchong Chang, Dominoes in Carbon Nanotubes. Physical Review Letters , 101, 175501,
24 October (2008).
73. Thomas John, A., & McGaughey Alan, J. H., Reassessing Fast Water Transport Through
Carbon Nanotubes. NANO LETTERS , (2008), Vol. 8, No. 9, p. 2788-2793.
74. Thomas John, A., & McGaughey Alan, J. H., Water Flow in Carbon Nanotubes: Transi-
tion to Subcontinuum Transport. prl 102, Physical Review Letters , р. 184502-1-184502-4,
(2009).
75. Uchic1 Michael, D., Dimiduk1 Dennis, M., Florando Jeffrey, N., & Nix William, D., Sam-
ple Dimensions Influence Strength and Crystal Plasticity. Science 13 August (2004): vol.
305 №. 5686, pp. 986-989.
76. Wang, C. Y., Ru, C. Q., & Mioduchowski, A., Phys. Rev. B 72, 075414, (2005).
77. Wang Q., & Varadan, V. K., Int. J. Solids Struc . 43. 254, (2006).
78. Wei-xian Zhang, Nanoscale iron particles for environmental remediation: An overview.
Journal of Nanoparticle Research № 5, pp. 323-332, (2003).
79. Whitby, M., & Quirke, N., Fluid flow in carbon nanotubes and nanopipes. Chem-
istry Department, Imperial College, South Kensington, London SW7 2AZ, UK.
Naturenanotechnology , www.nature.com/ naturenanotechnology, vol. 2, р. 87-94, Febru-
ary (2007).
80. Xi Chen, Guoxin Cao, Aijie Han, Venkata, K., Punyamurtula, Ling Liu, & Patricia, J.,
81. Yoon, J., Ru, C. Q., & Mioduchowski, A., Compos. Sci. Technol . 63, 1533 (2003).
Search WWH ::




Custom Search