Environmental Engineering Reference
In-Depth Information
25. Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P.,
Noy, A., & Bakajin, O., Fast Mass Transport Through Sub-2nm Carbon Nanotubes. Sci-
ence , (2006), v. 312, p. 1034-1037.
26. Hongfei Ye, Hongwu Zhang, Zhongqiang Zhang, & Yonggang Zheng. Size and tempera-
ture effects on the viscosity of water inside carbon nanotubes. Nanoscale Research Letters
(2011), p. 6-87, http://www.nanoscalereslett. com/content/6/1/87.
27. Huang, C., Wikfeldt, K. T., Tokushima, T., Nordlund, D., Harada, Y., Bergmann, U.,
Niebuhr, M., Weiss, T. M., Horikawa, Y., Leetmaa, M., Ljungberg, M. P., Takahashi, O.,
Lenz, A., Ojamae, L., Lyubartsev, A. P., Shin, S., Petterson, L. G. M., & Nilsson, A., The
inhogeneous structure of water at ambient conditions. Proceeding of the National Acad-
emy of Sciences ; http:/www.pnas.org/content/early/2009/08/13/0904743106.abstract.
28. Hummer, G., Rasaiah, J. C., & Noworyta, J. P., Nature (2001), 414, 188-190.
29. Ilyin, A. P., Gromov, A. A., & Yablunovsky, G. V., About activity of aluminum powders.
Physics of Combustion and Explosion , (2001), v. 37, № 4, p. 58-62.
30. Ilyin, A. P., Godymchuk, Yu, A., & Tikhonov, D. V., Threshold phenomena in the oxidation
of aluminum nanopowders. Physics and chemistry of ultrafine (nano-) systems: Proc. VII
All-Russian. Conf. Moscow: Moscow Engineering Physics Institute Printing, (2005), p.
178-179.
31. Jason, K. H., Hyung, G. P., Yinmin, W., Stadermann, M., Artyukhin, A. B., Grigoropoulos,
C. P., Noy, A., & Bakajin, O., Fast Mass Transport Through Sub-2-Nanometer Carbon
Nanotubes. Science , (2006). 312, 1034. рр. 1034-1037.
32. John, A., Thomas, & Alan,J. H.McGaughey, OttoleoKuter-Arnebeck. Pressure-driven wa-
ter flow through carbon nanotubes: Insights from molecular dynamics simulation. Inter-
national Journal of Thermal Sciences , 49, p. 281-289, (2010), journal homepage: www.
elsevier.com/locate/ijts.
33. Joseph, P., & Tabeling, P., Phys. ReV. E , ( 2005), 71, 035303.
34. Kalra, A., Garde,S., & Hummer,G., Osmotic water transport through carbon nanotube
arrays. Proeedings of the National Academy of Sciences of the USA , (2003), v. 100, p.
10175-10180.
35. Kotsalis, E. M., Walther, J. H., & Koumoutsakos, P., Multiphase water flow inside carbon
nanotubes. International Journal of Multiphase Flow , 30, (2004), p. 995-1010.
36. Kozlova, E. G., Emelianov, Yu, I., & Krasiy, B. V., The new catalysts for reforming of
gasoline with an octane rating of 96-98. Catalysis in Industry , (2003), № 6.
37. Korchagina, Yu, I., & Chetverikov, O. P., Methods of assessing the generation of hydrocar-
bons produce oil. M.: Nedra, (1983).
38. Lauga, E., Brenner, M. P., & Stone, H. A., Microfluidics: the no-slip boundary condition in
Handbook of Experimental Fluid Dynamics. New York: Springer, (2006).
39. Lauga, E., & Stone, H. A., Effective slip in pressure-driven Stokes flow. Journal of Fluid
Mechanics , (2003), V. 489, p. 55-77.
40. Li, T. D., Gao, J., Szoszkiewicz, R., Landman, U., & Riedo, E., Phys. Rev. B. (2007). 75.
115415.
41. Majumder, M., Chopra, N., Andrews, R., & Hinds, B., (2005), Nature 438, 44-44.
42. Mazalov, Yu, A., Patent RF № 2158396. The method of burning metal fuels . (2000).
43. Mirzadzhanzade Kh, A., Maharramov, A. M., Yusifzade, Kh, B., Shabanov, A. L., Nagiyev,
F. B., Mammadzadeh, R. B., & Ramazanov, M. A., Study the influence of nanoparticles of
iron and aluminum in the process of increasing the intensity of gas release and pressure for
use in oil production. News of Baku University. Science Series , № 1, 2005, p. 5-13.
44. Mirzadzhanzade Kh, A., Maharramov, A. M., Nagiyev, F. B., & Ramazanov, M. A., Nano-
technology applications in the oil industry. Proceedings of the II-nd Scientific Conference
“Nanotechnology-production (2005)”, November 30-December 1, (2005) Fryazino., p.
47-52.
Search WWH ::




Custom Search