Environmental Engineering Reference
In-Depth Information
49. Verma, S. & Walker, Preparation of carbon molecular sieves by propylene pyrolysis over
nickel-impregnated activated carbons. Carbon, 1993, 31(7), 1203-1207.
50. Verma, S.,. Nakayama Y., & Walker, P., Effect of temperature on oxygen-argon separation
on carbon molecular sieves. Carbon, 1993, 31(3), 533-534.
51. Chen, Y., & Yang R., Preparation of carbon molecular sieve membrane and diffusion of
binary mixtures in the membrane. Industrial & engineering chemistry research, 1994,
33(12), 3146-3153.
52. Rao, M. & Sircar S., Performance and pore characterization of nanoporous carbon mem-
branes for gas separation. Journal of membrane science, 1996, 110(1), 109-118.
53. Katsaros, F., et al., High pressure gas permeability of microporous carbon membranes.
Microporous materials, 1997, 8(3), 171-176.
54. Kang, I., Carbon Nanotube Smart Materials. 2005, University of Cincinnati.
55. Khan, Z. H., & Husain, M., Carbon nanotube and its possible applications. INDIAN
JOURNAL OF ENGINEERING AND MATERIALS SCIENCES, 2005, 12(6), 529.
56. Khare, R., & Bose, S., Carbon nanotube based composites-a review. Journal of Minerals &
Materials Characterization & Engineering, 2005, 4(1), 31-46.
57. Abuilaiwi, F. A., et al., Modification and functionalization of multi-walled carbon nano-
tube (MWCNT) via fischer esterification. The Arabian Journal for Science and Engineer-
ing, 2010, 35(1c), 37-48.
58. Gupta, S., & Farmer, J. Multi-walled carbon nanotubes and dispersed nanodiamond novel
hybrids: Microscopic structure evolution, physical properties, and radiation resilience.
Journal of Applied Physics, 2011, 109(1), 014314.
59. Upadhyayula, V. K. & Gadhamshetty, V. Appreciating the role of carbon nanotube com-
posites in preventing biofouling and promoting biofilms on material surfaces in environ-
mental engineering: A review. Biotechnology advances, 2010, 28(6), 802-816.
60. Saba, J., et al., Continuous electrodeposition of polypyrrole on carbon nanotube-carbon
fiber hybrids as a protective treatment against nanotube dispersion, Carbon, 2012.
61. Kim, W. D., et al., Tailoring the carbon nanostructures grown on the surface of Ni-Al
bimetallic nanoparticles in the gas phase. Journal of colloid and interface science, 2011,
362(2), 261-266.
62. Schwandt, C., Dimitrov, A., & Fray, D. The preparation of nano-structured carbon materi-
als by electrolysis of molten lithium chloride at graphite electrodes. Journal of Electro
analytical Chemistry, 2010,647 (2), 150-158.
63. Gao, C., et al., The new age of carbon nanotubes: An updated review of functionalized
carbon nanotubes in electrochemical sensors. Nanoscale, 2012, 4(6), 1948-1963.
64. Ben-Valid, S., et al., Spectroscopic and electrochemical study of hybrids containing con-
ductive polymers and carbon nanotubes. Carbon, 2010, 48(10), 2773-2781.
65. Vecitis, C. D., Gao, G., & Liu, H. Electrochemical carbon nanotube filter for adsorption,
desorption, and oxidation of aqueous dyes and anions. The Journal of Physical Chemistry
C, 2011, 115(9), 3621-3629.
66. Jagannathan, S., et al., Structure and electrochemical properties of activated polyacry-
lonitrile based carbon fibers containing carbon nanotubes. Journal of Power Sources,
2008,185(2), 676-684.
67. Zhu, Y., et al., Carbon-based super-capacitors produced by activation of graphene. Sci-
ence, 2011, 3326037, 1537-1541.
68. Obreja, V. V., On the performance of super-capacitors with electrodes based on carbon
nanotubes and carbon activated material—a review. Physica E: Low-dimensional Systems
and Nanostructures, 2008, 40(7), 2596-2605.
Search WWH ::




Custom Search