Biomedical Engineering Reference
In-Depth Information
B.5.4
Update Equation for Noise Precision
ʛ
We next derive the update equation for
ʛ
. The derivative of the average data likelihood
with respect to
ʛ
is given by
2 E K
T
ʛ ʘ( ʦ , ʛ ) =
K
2 ʛ 1
1
1 (
y k
Hx k )(
y k
Hx k )
.
(B.43)
k
=
Setting this derivative to zero, we get
K E K
T
1
ʛ 1
=
1 (
y k
Hx k )(
y k
Hx k )
.
(B.44)
k
=
Using the mean and the precision of the posterior distribution, the above equation is
rewritten as
K
1
K
ʛ 1
T
ʓ 1 H T
=
1 (
y k
H
x k )(
¯
y k
H
x k )
¯
+
H
.
(B.45)
k
=
B.5.5
Summary of the EM Algorithm
The EM algorithm is a recursive algorithm. We first set appropriate initial values to
the hyperparameters
, which are then used for computing the posterior dis-
tribution, i.e., for computing the mean and the precision of the posterior distribution
using
ʦ
and
ʛ
H T
ʓ = ʦ +
ʛ
H
,
x k = ʓ 1 H T
H T
) 1 H T
ʛ
y k = ( ʦ +
ʛ
H
ʛ
y k .
With these parameter values of the posterior distribution, the hyperparameters
ʦ
and
ʛ
are updated using
K
1
K
ʦ 1
x k
+ ʓ 1
=
1 ¯
x k ¯
,
k
=
K
1
K
ʛ 1
ʓ 1 H T
T
=
1 (
y k
x k )(
¯
y k
x k )
¯
+
.
H
H
H
k
=
The step that computes the posterior distribution is called the E step, and the step
that estimates the hyperparameters is called the M step. The EM algorithm updates
 
Search WWH ::




Custom Search