Information Technology Reference
In-Depth Information
Therefore,
exp
m t ) 2 (1 + tan 2 ( y )) .
1
2 πσ t
1
2 σ t
f Y |t ( y )=
(tan( y )
(3.49)
π
But from f E|t ( e )= f Y |t ( t
e ), follows that f E|− 1 ( e )= f Y |− 1 (
2
e )
π, 0[
]
and f E| 1 ( e )= f Y | 1 ( 2 − e ) ]0 [.Thus:
exp
2 − e ) − m t ) 2 (1 + tan 2 ( t π
2 σ t (tan( t π
1
2 πσ t
1
f E|t ( e )=
2 − e )) =
(3.50)
exp
m t ) 2 (1 + cot 2 ( e )) .
1
2 πσ t
1
2 σ t
=
(cot( e )
(3.51)
Since the f E|t ( e ) are disjoint, V R 2 ( E )= p 1 V R 2 ( E
1) + p 2
|
1 V R 2 ( E
|−
1),with
1) = π
0
1) = 0
−π
f E| 1 ( e ) de and V R 2 ( E
f E|− 1 ( e ) de .
V R 2 ( E
|
|−
(3.52)
Let us perform the following change of variable: z =cot( e )
m t .Wethen
dz
1+cot 2 ( e ) . Taking care of the limits of the
integrals the potential can be expressed as
have cot ( e ) de = dz ,or de =
−∞
e −z 2 t (1 + cot 2 ( e )) 2
1+cot 2 ( e )
1
2 πσ t
V R 2 ( E
|
t )=
(
dz )=
(3.53)
+
+
1
2 πσ t
e −z 2 t (1 + ( z + m t ) 2 ) dz .
=
(3.54)
−∞
π z
e −t 2 dt (erf(
2
On the other hand, with erf( z )=
−∞
)=
1,erf(+
)=
0
1),wehave:
+
erf z
σ
+
1
2 πσ 2
1
4 πσ
1
2 πσ
e −z 2 2 dz =
=
;
(3.55)
−∞
−∞
2 πσ 2 +
−∞
1
e −z 2 2 ( z + m ) 2 dz =
e −z 2 2 + σ 3 π
4
erf z
σ
σ 2 z
2
1
2 πσ 2
2 e −z 2 2 +
=
m 2 πσ
2
+
σ 3 π
2
+ m 2 πσ =
erf z
σ
m 2
2 πσ
1
2 πσ 2
σ
4 π +
+
=
.
−∞
(3.56)
Search WWH ::




Custom Search