Information Technology Reference
In-Depth Information
0.8
0.9
P e (x'), H S (x')
P e (x'), H S (x')
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
x'
x'
0
0
−5
0
5
−5
0
5
(a)
(b)
0.9
0.9
P e (x'), H S (x')
P e (x'), H S (x')
0.8
0.8
0.7
0.7
0.6
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0.1
x'
x'
0
0
−5
0
5
−5
0
5
(c)
(d)
Fig. 4.3 H S (dashed line) and P e (solid line) plotted as functions of x in a two-
class Gaussian problem. Corresponding minima (maximum for H S in d)) are marked
with vertical lines. Taking a) as reference where μ 1 = 2 , μ 1 =0 , σ 1 = σ 1 =1
and p = q =0 . 5 , one has: b) p =0 . 2 ;c) σ 1 =2 ;d) μ 1 = 1 .
d
dx
R MSE ( x )=0
f X|− 1 ( x )= f X| 1 ( x ) .
(4.23)
Thus, the MMSE procedure produces an optimum x corresponding to the
intersection of f X|− 1 with f X| 1 , which happens to be the min P e solution.
2. Quadratic Rényi EE risk
ln
e
P E ( e ) .
R R 2 EE ( x )
H R 2 ( x )=
(4.24)
The information potential is then
V R 2 ( x )=exp(
H R 2 ( x )) = P 2
P 1 ) 2 + P 1
1 +(1
P 1
(4.25)
whose maximizing x will minimize H R 2 ( x ).Wehave:
 
Search WWH ::




Custom Search