Information Technology Reference
In-Depth Information
circuits require careful handling, because signals must be carefully synchronized.
We would like to support in the future, multiple clock zones layout types and
more NML types. Finally we are working with the aim of improving the simula-
tion engine supporting other types of NML.
Overall it is possible to conclude that ToPoliNano has a great potential that
must be still exploited, and we are doing our best toward this direction.
References
1. Porod, W.: Magnetic Logic Devices Based on Field-Coupled Nanomagnets. Nano
and Giga, Tempe (2007)
2. Imre, A.: Experimental study of nanomagnets for quantum-dot cellular
automata(MQCA)logic applications. Ph.D. thesis, University of Notre Dame,
Notre Dame, Indiana (2005)
3. Lent, C., Tougaw, P., Porod, W., Bernstein, G.: Quantum cellular automata. Nan-
otechnology 4 , 49-57 (1993)
4. Csurgay, A., Porod, W., Lent, C.: Signal processing with near-neighborcoupled
time-varying quantum-dot arrays. IEEE Trans. Circ. Syst. 47 (8), 1212-1223 (2000)
5. Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT implementation using QCA.
In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems,
ICECS, pp. 741-744 (2012)
6. Graziano, M., Chiolerio, A., Zamboni, M.: A technology aware magnetic QCA
NCL-HDL architecture. In: 9th IEEE Conference on Nanotechnology. IEEE-NANO
2009, Genoa, Italy, July 2009, pp. 763-766. IEEE (2009)
7. Chiolerio, A., Allia, P., Graziano, M.: Magnetic dipolar coupling and collective
effects for binary information codification in cost-effective logic devices. J. Magn.
Magn. Mater. 324 (19), 3006-3012 (2012)
8. Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA compu-
tation. In: IEEE International Conference on Nanotechnology, pp. 1-5 (2012)
9. Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular
QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77 ,
101-107 (2012)
10. Pulimeno, A., Graziano, M., Saginario, A., Cauda, V., Demarchi, D., Piccinini, G.:
Bis-ferrocene molecular QCA wire: ab-initio simulations of fabrication driven fault
tolerance. IEEE Trans. Nanotechnol. 12 (4), 498-507 (2013)
11. Das, J., Alam, S., Bhanja, S.: Ultra-low power hybrid CMOS-magnetic logic archi-
tecture. IEEE Trans. Circ. Syst. 59 (9), 2008-2016 (2012)
12. Karunaratne, D., Bhanja, S.: Study of single layer and multilayer nano-magnetic
logic architectures. J. Appl. Phys. 111 , 07A928 (2012)
13. Niemier, M., et al.: Nanomagnet logic: progress toward system-level integration. J.
Phys. Condens. Matter 23 , 493202 (2011)
14. Graziano, M., Vacca, M., Zamboni, M.: Magnetic QCA Design: Modeling, Sim-
ulation and Circuits. Cellular Automata - Innovative Modelling for Science
and Engineering, InTech (2011). http://www.intechopen.com/articles/show/title/
magnetic-qca-design-modeling-simulation-and-circuits
15. Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.:
Magnetic QCA majority voter feasibility analysis. In: 2011 7th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), pp. 229-232 (2011)
Search WWH ::




Custom Search