Information Technology Reference
In-Depth Information
26. Timler, J., Lent, C.S.: Power gain and dissipation in quantum-dot cellular
automata. J. Appl. Phys. 91 , 823-831 (2002)
27. Timler, J., Lent, C.S.: Maxwell's demon and quantum-dot cellular automata. J.
Appl. Phys. 94 , 1050-1060 (2003)
28. Lent, C.S., Isaksen, B.: Clocked molecular quantum-dot cellular automata. IEEE
Trans. Electron Dev. 50 , 1890-1896 (2003)
29. Jin, Z.: Fabrication and measurement of molecular quantum cellular automata
(QCA) device. Master's thesis, University of Notre Dame, Notre Dame, IN 46556
(2006)
30. Data flow in molecular QCA: Logic can “sprint,” but the memory wall can still be
a “hurdle” (2005)
31. Lent, C., Liu, M., Lu, Y.: Bennett clocking of quantum-dot cellular automata and
the limits to binary logic scaling. Nanotechnology 17 (16), 4240-4251 (2006)
32. Walus, K., Budiman, R.A., Jullien, G.A.: Impurity charging in semiconductor
quantum-dot cellular automata. Nanotechnology 16 (11), 2525-2529 (2005)
33. Walus, K.: Design and simulation of quantum-dot cellular automata devices and
circuits. Ph.D. thesis, University of Alberta, September (2005)
34. Walus, K., Karim, F., Ivanov, A.: Architecture for an external input into a molec-
ular QCA circuit. J. Comput. Electron. 8 , 35-42 (2009)
35. Karim, F., Walus, K., Ivanov, A.: Analysis of field-driven clocking for molecular
quantum-dot cellular automata. J. Comput. Electron. 9 , 16-30 (2010)
36. Hennessy, K., Lent, C.S.: Clocking of molecular quantum-dot cellular automata.
J. Vac. Sci. Technol. B 19 (5), 1752-1755 (2001)
37. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J.
Appl. Phys. 74 , 6227-6233 (1993)
38. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular
automata. J. Appl. Phys. 75 , 1818-1825 (1994)
39. Tougaw, P.D., Lent, C.S.: Dynamic behavior of quantum cellular automata. J.
Appl. Phys. 80 , 4722-4735 (1996)
40. Toth, G., Lent, C.S.: Role of correlation in the operation of quantum-dot cellular
automata. J. Appl. Phys. 89 , 7943-7953 (2001)
41. Karim, F., Navabi, A., Walus, K., Ivanov, A.: Quantum mechanical simulation of
QCA with a reduced hamiltonian. In: Proceedings of the 8th IEEE Conference on
Nanotechnolgy (2008)
42. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipa-
tion in QCA circuits. IEEE Trans. Nanotechnol. 8 (1), 116-127 (2009)
43. Lieberman, M., Chellamma, S., Varughese, B., Wang, Y.L., Lent, C., Bernstein,
G.H., Snider, G., Peiris, F.C.: Quantum-dot cellular automata at a molecular scale.
Mol. Electron. II 960 , 225-239 (2002)
44. Walus, K., Mazur, M., Schulhof, G., Jullien, G.A.: Simple 4-bit processor based
on quantum-dot cellular automata (QCA). In: Proceedings of Application Specific
Architectures, and Processors Conference, pp. 288-293, July 2005
45. Lent, C.S., Tougaw, P.D., Porod, W.: Bistable saturation in coupled quantum dots
for quantum cellular automata. Appl. Phys. Lett. 62 , 714-716 (1993)
46. Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger,
W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59 , 1-85 (1987)
47. Mahler, G., Weberruß, V.A.: Quantum Networks: Dynamics of Open Nanostruc-
tures. Springer, Berlin (1998)
48. Weiss, U.: Quantum Dissipative Systems. World Scientific, Stuttgart (2008)
Search WWH ::




Custom Search