Information Technology Reference
In-Depth Information
35. Frache, S., Chiabrando, D., Graziano, M., Riente, F., Turvani, G., Zamboni, M.:
ToPoliNano: nanoarchitectures design made real. In: IEEE International Sympo-
sium on Nanoscale Architectures (NANOARCH), pp. 160-167 (2012)
36. Frache, S., Chiabrando, D., Graziano, M., Vacca, M., Boarino, L., Zamboni, M.:
Enabling design and simulation of massive parallel nanoarchitectures. J. Parallel
Distrib. Comput. 74 (6), 2530-2541 (2013)
37. Vacca, M., Frache, S., Graziano, M., Crescenzo, L., Cairo, F., Zamboni, M.: Auto-
matic Place&Route of Nano-magnetic Logic circuits, pp. 58-63, July 2013
38. Vacca, M., Vighetti, D., Mascarino, M., Amaru, L., Graziano, M., Zamboni, M.:
Magnetic QCA majority voter feasibility analysis. In: 2011 7th Conference on Ph.D.
Research in Microelectronics and Electronics (PRIME), pp. 229-232 (2011)
39. Fant, K., Brandt., S.: NULL convention logic TM , a complete and consistent logic for
asynchronous digital circuit synthesis. In: International Conference on Application
Specific Systems, Chicago-Illinois, USA, pp. 261-273. IEEE (1996)
40. Choi, M., Patitz, Z., Jin, B., Tao, F., Park, N.: Designing layout-timing indepen-
dent quantum-dot cellular automata (QCA) circuits by global asynchrony. J. Syst.
Architect. Elsevier 53 , 551-567 (2007)
41. Vacca, M., Graziano, M., Zamboni, M.: Asynchronous solutions for nano-magnetic
logic circuits. ACM J. Emerg. Tech. Comp. Syst. 7 (4), 15 (2011)
42. Mentor Graphics. http://www.modelsim.com
43. Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot cellular automata
check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12 (3),
368-377 (2013)
44. Awais, M., Vacca, M., Graziano, M., Masera, G.: FFT implementation using QCA.
In: 2012 19th IEEE International Conference on Electronics, Circuits and Systems
(ICECS), pp. 741-744 (2012)
45. Martina, M., Masera, G.: Turbo NOC: a framework for the design of network-on-
chip-based turbo decoder architectures. IEEE Trans. Circ. Syst. I 57 (10), 2776-
2789 (2010)
46. Kung, H., Leiserson, C., Science, C.M.U.D.o.C.: Systolic Arrays for (VLSI). CMU-
CS. Carnegie-Mellon University, Department of Computer Science (1978)
47. Haron, N., Hamdioui, S.: Why is CMOS scaling coming to an END? In: 3rd Inter-
national Design and Test Workshop, IDT 2008, pp. 98-103, December 2008
48. Pan, S.B., Park, R.H.: Unified systolic arrays for computation of the
DCT/DST/DHT. IEEE Trans. Circ. Syst. Video Technol. 7 (2), 413-419 (1997)
49. Panchanathan, S., Goldberg, M.: A systolic array architecture for image coding
using adaptive vector quantization. IEEE Trans. Circ. Syst. Video Technol. 1 (2),
222-229 (1991)
50. Iyengar, G., Panchanathan, S.: Systolic array architecture for Gabor decomposi-
tion. IEEE Trans. Circ. Syst. Video Technol. 5 (4), 355-359 (1995)
51. Lim, H., Swartzlander, E.J.: Multidimensional systolic arrays for the implementa-
tion of discrete Fourier transforms. IEEE Trans. Signal Process. 47 (5), 1359-1370
(1999)
52. Herzberg, H., Haimi-Cohen, R.: A systolic array realization of an LMS adaptive
filter and the effects of delayed adaptation. IEEE Trans. Signal Process. 40 (11),
2799-2803 (1992)
53. Chang, L.W., Wu, M.C.: A unified systolic array for discrete cosine and sine trans-
forms. IEEE Trans. Signal Process. 39 (1), 192-194 (1991)
54. Buyukkurt, B., Najj, W.: Compiler generated systolic arrays for wavefront algo-
rithm acceleration on FPGAs. In: International Conference on Field Programmable
Logic and Applications, FPL 2008, pp. 655-658, September 2008
Search WWH ::




Custom Search