Information Technology Reference
In-Depth Information
References
1. International technology roadmap for semiconductors (ITRS). http://www.itrs.net
2. Snider, G.L., Orlov, A.O., Amlani, I., Zuo, X., Bernstein, G.H., Lent, C.S., Merz, J.L.,
Porod, W.: Quantum-dot cellular automata: review and recent experiments. J. Appl. Phys.
85, 4283-4285 (1999)
3. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots. Proc.
IEEE 85, 541-557 (1997)
4. Walus, K., Jullien, G., and Dimitrov, V.S.: Computer arithmetic structures for quantum
cellular automata. In: Proceedings of the Asilomar Conference on Signals, Systems, and
Computers, vol. 2, pp. 1435-1439, IEEE Press (2003)
5. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automate.
J. Appl. Phys. 75, 1818-1825 (1994)
6. Oya, T., Asai, T., Fukui, T., Amemiya, Y.: A majority-logic nanodevice using a balanced
pair of single-electron boxes. J. Nanosci. Nanotechnol. 2, 333-342 (2002)
7. Oya,
T., Asai, T.,
Fukui, T., Amemiya,
Y.:
A majority-logic
nanodevice
using an
irreversible single-electron boxes. IEEE Trans. Nanotechnol. 2, 15-22 (2003)
8. Fahmy, H.A., Kiehl, and R.A.: Complete logic family using tunneling-phase-logic devices.
In: Proceedings of the International Conference on Microelectronics, pp. 22-24 (1999)
9. Zhang, R., Walus, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for
quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443-450 (2004)
10. Walus, K., Schulhof, G., Jullien, G.A., Zhang, R., Wang, w.: Circuit design based on
majority gates for applications with quantum-dot cellular automata. In: IEEE Asilomar
Conference on Signals, Systems, and Computers, pp. 1354-1357. IEEE Press (2004)
11. Bonyadi, M., Azghadi, S., Rad, N., Navi, K., Afjei, E.: Logic optimization for majority
gate-based nanoelectronic circuits based on genetic algorithm. In: Proceedings of the
International Conference on Electrical Engineering, pp. 1-5 (2007)
12. Rai, S.: Majority gate based design for combinational quantum cellular automata (QCA)
circuits. In: Proceedings of 40th Southeastern Symposium on System Theory. pp. 222-224
(2008)
13. Zhang, R., Gupta, P., Jha, N.K.: Majority and minority network synthesis with application
to QCA-, SET-, and TPL-based nanotechnologies. IEEE Trans. Comput. Aided Des. Integr.
Circ. Syst. 26, 1233-1245 (2007)
14. Huo, Z., Zhang, Q., Haruehanroengra, S., Wang W.: Logic optimization for majority gate-
based nanoelectronic circuits. In: Proceedings of the International Symposium on Circuits
and Systems, pp. 1307-1310 (2006)
15. Kong, K., Shang, Y., Lu, R.: An optimized majority logic synthesis methodology for
quantum-dot cellular automata. IEEE Trans. Nanotechnol. 9, 170-183 (2010)
16. Wang, P., Niamat, M., Vemuru, S.: Minimal majority gate mapping of 4-variable functions
for quantum cellular automata. IEEE Conference on Nanotechnology, pp. 1307-1312
(2011)
17. Blair, E.P., Lent, C.S.: Quantum-dot cellular automata: an architecture for molecular
computing. In: International Conference on Simulation of Semiconductor and Devices,
pp. 14-18 (2003)
18. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)
19. McKay, B.D.: Practical graph isomorphism. Congressus Numerantium 30, 45-87 (1981)
20. Wolf, W.: Modern VLSI Design: System-on-Chip Design. Prentice-Hall, Upper Saddle
River (2002)
Search WWH ::




Custom Search