Environmental Engineering Reference
In-Depth Information
58. Boistelle R, Astier JP (1988) Crystallization mechanisms in solution. J Cryst Growth 90:14-
30
59. Gribanov NM, Bibik EE, Buzunov OV, Naumov VN (1990) Physicochemical regularities of
obtaining highly dispersed magnetite by the method of chemical condensation. J Magn Magn
Mater 85(1-3):7-10
60. Sugimoto T (2003) Formation of monodispersed nano- and micro-particles controlled in size,
shape, and internal structure. Chem Eng Tech 26(3):313-321
61. Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation.
Chem Eng Comm 191(4):580-606
62. Liu XQ, Tao SW, Shen YS (1997) Preparation and characterization of nanocrystalline alpha-
Fe 2 O 3 by a sol-gel process. Sensor Actuator B Chem 40(2-3):161-165
63. Kojima K, Miyazaki M, Mizukami F, Maeda K (1997) Selective formation of spinel iron
oxide in thin films by complexing agent-assisted sol-gel processing. J Sol-Gel Sci Technol 8
(1-3):77-81
64. Gamarra LF, Brito GES, Pontuschka WM, Amaro E, Parma AHC, Goya GF (2005) Biocom-
patible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and
magnetic study. J Magn Magn Mater 289:439-441
65. R ˘ ileanu M, Cri¸an M, Petrache C, Cri¸an D, Jitianu A, Zaharescu M, Predoi D, Kuncser V,
Filoti G (2005) Sol-Gel Fe x O y -SiO 2 nanocomposites. Rom J Phy 50(5-6):595-606
66. Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK, Shah DO (2001) Improved drug delivery
using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug
Carrier Syst 18(1):77-140
67. Vidal-Vidal J, Rivas J, Lopez-Quintela MA (2006) Synthesis of monodisperse maghemite
nanoparticles by the microemulsion method. Colloids Surf A Physicochem Eng Asp 288(1-
3):44-51
68. Chin AB, Yaacob II (2007) Synthesis and characterization of magnetic iron oxide
nanoparticles via w/o microemulsion and Massart
s procedure. J Mater Process Technol
'
191(1-3):235-237
69. Haggerty JS (1981) Controlling powder size with collimated light beam—which selectively
vaporises larger particles. US Patent Number US4289952-A
70. Morjan I, Alexandrescu R, Dumitrache F, Birjega R, Fleac˘ C, Soare I et al (2010) Iron oxide-
based nanoparticles with different mean sizes obtained by the laser pyrolysis: structural and
magnetic properties. J Nanosci Nanotechnol 10(2):1223-1234
71. McKittrick J, Shea LE, Bacalski CF, Bosze EJ (1999) The influence of processing parameters
on luminescent oxides produced by combustion synthesis. Displays 19(4):169-172
72. Garcia R, Hirata GA, McKittrick J (2001) New combustion synthesis technique for the
production of (In x Ga 1-x ) 2 O 3 powders: hydrazine/metal nitrate method. J Mater Res 16
(4):1059-1065
73. Mukasyan AS, Costello C, Sherlock KP, Lafarga D, Varma A (2001) Perovskite membranes
by aqueous combustion synthesis: synthesis and properties. Sep Purif Technol 25(1-3):117-
126
74. Luo XX, Cao WH, Xing MM (2006) Preparation of nano Y 2 O 2 S:Eu phosphor by ethanol
assisted combustion synthesis method. J Rare Earths 24(1):20-24
75. Li F, Hu K, Li JL, Zhang D, Chen G (2002) Combustion synthesis of gamma-lithium
aluminate by using various fuels. J Nucl Mater 300(1):82-88
76. Jung CH, Park JY, Oh SJ, Park HK, Kim YS, Kim DK, Kim JH (1998) Synthesis of Li 2 TiO 3
ceramic breeder powders by the combustion process. J Nucl Mater 253:203-212
77. Ozuna O, Hirata GA, McKittrick J (2004) Pressure influenced combustion synthesis of
gamma- and alpha-Al 2 O 3 nanocrystalline powders. J Phys Condens Matter 16(15):2585-
2591
78. Chen D, Xu R (1998) Hydrothermal synthesis and characterization of nanocrystalline Fe 3 O 4
powders. Mater Res Bull 33(7):1015-1021
Search WWH ::




Custom Search