Information Technology Reference
In-Depth Information
6. Katiyar, V. K.; and Basavarajappa, K. S.; Blood flow in the cardiovascular system in
the presence of magnetic field. Int. J. Appl. Sci. Comput . 2002, 9, 118-127.
7. Kinouchi, Y.; Yarnaguchi, H.; and Tenforde, T. S.; Theoretical analysis of magnetic
field interactions with aortic blood flow. J Bioelectromagnetics . 1996, 17, 21-32.
8. Sud, V. K.; and Sekhon, G. S.; Blood flow through the human arterial system in the
presence of a steady magnetic field. Phys. Med. Biol , 1989, 34, 795-805.
9. Tashtoush, B.; and Magableh, A.; Magnetic field effect on heat transfer and fluid flow
characteristics of blood flow in multi-stenotic arteries. Heat Mass Transfer . 2008, 44,
297-304.
10. Tzirtzilakis, E. E.; A mathematical model for blood flow in magnetic field. Phys. Flu-
ids . 2005, 17, 1-15.
11. Misra, J. C.; and Chakraborty, S.; Flow in arteries in the presence of stenosis. J. Bio-
mech. 1986, 19, 907-918.
12. Siddiqui, S. U.; Mishra, S.; and Medhavi, A.; Blood flow through a composite stenosis
in an artery with permeable wall. Appl. Appl. Math. 2011, 6, 1798-1813.
13. Misra, J. C.; Shit, G. C.; and Rath, H. G.; Flow and heat transfer of a MHD viscoelastic
fluid in a channel with stretching walls: some applications to haemodynamics. Com-
put. Fluids. 2008, 37, 1-11.
14. Misra, J. C.; and Kar, B. K.; Momentum integral method for studying flow character-
istics of blood through a stenosed vessel. Biotechnol. 1989, 26, 23-25.
15. BasuMallik, B.; and Nanda, S. P.; A non-Newtonian two-phase fluid model for blood
flow through arteries under stenotic condition. IJPBS . 2012, 2, 237-247.
16. Mandal, P. K.; Ikbal, Md. A.; Chakravarty, S.; Wongb Kelvin, K. L.; and Mazumdar,
J.; Unsteady response of non-Newtonian blood flow through a stenosed artery in mag-
netic field. J. Comput. Appl. Math . 2009, 230, 243-259.
17. Abbas, Z.; Sajid, M.; and Hayat, T.; Mhd boundary-layer flow of an upper-convected
maxwell fluid in a porous channel. Theor. Comput. Fluid Dyn . 2006, 20, 229-238.
18. Mishra, B. K.; and Verma. N.; Effect of porous parameter and stenosis on the wall
shear stress for the flow of blood in human body. Res. J. Med. Med. Sci . 2007, 2,
98-101.
19. Jain, M.; Sharma, G; and Singh, R.; Mathematical modeling of blood flow in a ste-
nosed artery under mhd effect through porous medium. Int. J. Eng.-Trans. B: Appl .
2010, 23, 243-252.
20. Sankar, D. S.; Mathematical analysis of blood flow through stenosed arteries with
body acceleration. January 28-29, 2010. Nat. Conference Appl Math. (NCAM). 2010 .
21. Sankar D. S.; and Lee, U.; Mathematical modeling of pulsatile flow of non-Newtonian
fluid in stenosed arteries. Commun. Non-Linear Sci. Numer. Simul. 2009, 14, 2971-
2981.
22. Nanda. S. P.; and Bose. R. K.; A mathematical model for blood flow through a narrow
artery with multiple stenosis. J. Appl. Math. Fluid Mech. 2012, 4, 233-242.
23. Haik, Y.; Pai, V.; and Chen, C. J.; Biomagnetic Fluid Dynamics: Fluid Dynamics at
Interfaces. Ed. Shyy, W.; Narayanan, R.; Cambridge: Cambridge University Press;
1999, 439-452.
24. Motta, M.; Haik, Y.; Gandhari, A.; Chen, C. J.; High magnetic field effects on hu-
man deoxygenated hemoglobin light absorption. Bioelectrochem. Bioenerg . 1998, 47,
297-300.
 
Search WWH ::




Custom Search