Information Technology Reference
In-Depth Information
12. Feng, X. T.; Yu, J. G.; Lei, M.; Fang, W. H.; and Liu, S.; Toward understanding metal-
binding specificity of porphyrin: aconceptual density functional theory study. J. Phys.
Chem. B . 2009, 113, 13381-13389.
13. Islam, N.; and Das, M.; Do the Fukui function and local softness specify the softest
and hardest regions of porphyrin? Int. J. Chem. Model. 2013, 5, 67-81.
14. Islam, N.; and Das, M.; Semi empirical AM1 studies on porphyrin . Modern Trends
Chem. Chem. Eng. Ed. Haghi, A. K.; Apple Academic Press; 2011, 124-136.
15. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; and Stewart, J. J. P.; “Development
and use of quantum mechanical molecular models. 76. AM1: a new general purpose
quantum mechanical molecular model.” J. Am. Chem. Soc . 1985, 107, 3902-3909.
16. Dewar, M. J. S.; Jie, C.; and Yu, J.; “SAM1; the first of a new series of general purpose
quantum mechanical molecular models.” Tetrahedron. 1993, 49, 5003-5038.
17. Hückel, E.; Zur quantentheorie der doppelbindung. Zeitschrift für Physik. 1930, 60,
423-456.
18. Hückel, E.; “Quantentheoretische beiträge zum benzolproblem.” Zeitschrift für Physik.
1931, 70(3-4), 204-286.
19. Parr, R. G.; Donnelly, R. A.; Levy, M.; and Palke, W. E.; Electronegativity: the density
functional viewpoint. J. Chem. Phys. 1978, 68, 3801-3807.
20. Gyftpoulous, E. P.; and Hatsopoulos, G. N.; Quantum-thermodynamic definition of
electronegativity. Proc. Natl. Acad. Sci. 1968, 60, 786-793.
21. Iczkowski, R. P.; and Margrave, J. L.; Electronegativity. J. Am. Chem. Soc. 1961, 83,
3547-3551.
22. Parr, R. G.; and Pearson, R. G.; Absolute hardness: companion parameter to absolute
electronegativity. J. Am. Chem. Soc . 1983, 105, 7512-7516.
23. Pearson, R. G.; Absolute electronegativity and hardness correlated with molecular or-
bital theory. Proc. Natl. Acad. Sci . 1986, 83, 8440-8441.
24. Parr, R. G.; Szentpaly, L. V.; and Liu, S.; Electrophilicity index. J. Am. Chem. Soc.
1999, 121, 1922-1924.
25. Maynard, A. T.; and Covell, D. G.; Reactivity of zinc finger cores: analysis of protein
packing and electrostatic screening. J. Am. Chem. Soc. 2001, 123, 1047-1058.
26. Parr, R. G.; and Yang, W.; Density functional approach to the frontier-electron theory
of chemical reactivity. J. Am. Chem. Soc. 1984, 106, 4049-4050.
27. Fukui, K.; Yonezawa, T.; and Shingu, H. A.; Molecular orbital theory of reactivity in
aromatic hydrocarbons. J. Chem. Phys . 1952, 20, 722-725.
28. Yang, W.; and Parr, R. G.; Hardness, softness, and the Fukui function in the electronic
theory of metals and catalysis. Proc. Natl. Acad. Sci. USA. 1985, 82, 6723-6726.
29. Li, Y.; and Evans, J. N. S.; The Fukui function: Akey concept linking frontier molecu-
lar orbital theory and the hard-soft-acid-base principle. J. Am. Chem. Soc. 1995, 117,
7756-7759.
30. Chattaraj, P. K.; Maity, B.; and Sarkar, U.; Philicity: A unified treatment of chemical
reactivity and selectivity. J. Phys. Chem. A. 2003, 107, 4973-4975.
31. Mulliken, R. S.; Electronic population analysis on LCAO-MO molecular wave func-
tions. I J. Chem. Phys. 1955, 23, 1833-1840.
32. Csizmadia, G.; Theory and Practice of MO Calculations on Organic Molecules. Am-
sterdam: Elsevier; 1976 .
 
Search WWH ::




Custom Search