Information Technology Reference
In-Depth Information
in fitness between these viral phenotypes may allow other factors to tip the balance
in favor of X4 virus and help explain why in about 50% of patients the viral phe-
notype switches from R5 to X4 late in infection (Mosier 2000).
Acknowledgements
I thank the Discipline of Genetics and the School of Molecular and Biomedical Sci-
ence, University of Adelaide, for support, and the South Australian Partnership for
Advanced Computing (SAPAC) for access to high-performance computing resources.
References
Cauerhff, A., Goldbaum, F.A., and Braden, B.C. (2004) Structural mechanism for affinity
maturation of an anti-lysozyme antibody. Proc. Natl. Acad. Sci. USA 101:3539-3544.
Coffin, J.M. (1999) In: K.A. Crandall (Ed.), The Evolution of HIV . Johns Hopkins University
Press, Baltimore, pp. 3-40.
da Silva, J. (2006a) Site-specific amino acid frequency, fitness and the mutational landscape
model of adaptation in human immunodeficiency virus type 1. Genetics 174:1689-1694.
da Silva, J. (2006b) In: A.Y. Zomaya (Ed.), Parallel Computing for Bioinformatics and
Computational Biology . John Wiley & Sons, New York, pp. 29-57.
Frank, S.A. (2002) Immunology and Evolution of Infectious Disease . Princeton University
Press, Princeton.
Gorny, M.K., Williams, C., Volsky, B., Revesz, K., Cohen, S., Polonis, V.R., Honnen, W.J.,
Kayman, S.C., Krachmarov, C., Pinter, A., and Zolla-Pazner, S. (2002) Human
monoclonal antibodies specific for conformation-sensitive epitopes of V3 neutralize hu-
man immunodeficiency virus type 1 primary isolates from various clades. J. Virol.
76:9035-9045.
Korber, B.T., Farber, R.M., Wolpert, D.H., and Lapedes, A.S. (1993) Covariation of mutations
in the V3 loop of human immunodeficiency virus type 1 envelope protein: An information
theoretic analysis. Proc. Natl. Acad. Sci. USA 90:7176-7180.
Levy, D.N., Aldrovandi, G.M., Kutsch, O., and Shaw, G.M. (2004) Dynamics of HIV-1
recombination in its natural target cells. Proc. Natl. Acad. Sci. USA 101:4204-4209.
Mansky, L.M., and Temin, H.M. (1995) Lower in vivo mutation rate of human immunodefi-
ciency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J.
Virol. 69:5087-5094.
McKeating, J.A., Gow, J., Goudsmit, J., Pearl, L.H., Mulder, C., and Weiss, R.A. (1989)
Characterization of HIV-1 neutralization escape mutants. AIDS 3:777-784.
McKnight, A., Weiss, R.A., Shotton, C., Takeuchi, Y., Hoshino, H., and Clapham, P.R. (1995)
Change in tropism upon immune escape by human immunodeficiency virus. J. Virol.
69:3167-3170.
Mosier, D.E. (2000) Virus and target cell evolution in human immunodeficiency virus type 1
infection. Immunol. Res. 21:253-258.
Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., and Ho, D.D. (1996) HIV-1
dynamics in vivo: Virion clearance rate, infected cell life-span, and viral generation time.
Science 271:1582-1586.
Richman, D.D., Wrin, T., Little, S.J., and Petropoulos, C.J. (2003) Rapid evolution of the
neutralizing antibody response to HIV type 1 infection. Proc. Natl. Acad. Sci. USA
100:4144-4149.
Search WWH ::




Custom Search