Information Technology Reference
In-Depth Information
Perelson, A.S., and Nelson, P.W. (1999) Mathematical analysis of HIV-1 dynamics in vivo.
SIAM Rev. 41:3-44.Preziosi, L. (Ed.) (2003) Cancer Modelling and Simulation . CRC
Press , London.
Ruskin, H.J., Pandey, R.B., and Liu, Y. (2002) Viral load and stochastic mutation in a Monte
Carlo simulation of HIV. Physica A 311:213-220.
Segel, L.A., and Perelson, A.S. (1991) Exploiting the diversity of time scales in the immune
system: A B-cell antibody model . J. Stat. Phys. 63:1113-1131.
Sieburg, H.B., McCutchan, J.A., Clay, O., Caballero, L., and Ostlund, J.J. (1990) Stimulation
immune systems. Physica D 45:208-227.
Stauffer, D. (1989) Immunologically motivated cellular automata. In: A. Pires, D.P. Landau,
and H.J. Herrmann (Eds.), Computational Physics and Cellular Automata . World Scien-
tific, Singapore, pp. 89-97.
Thomè, T., and Drugowich de Felício, J.R. (1996) Probabilistic cellular automaton describing
a biological immune system. Phys. Rev. E 53:3976-3981.
Varthakavi, V., Smith, R.M., Deng, H., Sun, R., and Spearman, P. (2002) Human immunode-
ficiency virus type-1 activates lytic cycle replication of Kaposi's sarcoma-associated
herpesvirus through induction of KSHV Rta. Virology 297:270-280.
Weisbuch, G.I., and Atlan, H. (1988) Control of the immune response J. Phys. A 21:189-192.
Zorzenon dos Santos, R.M. (1999) Immune responses: Getting close to experimental results
with cellular automata models. In: D. Stauffer (Ed.), Annual Review of Computational
Physics VI . World Scientific, Singapore, pp.159-202.
Zorzenon dos Santos, R.M., and Coutinho, S.C. (2001) The dynamics of the HIV infection:
Acellular automata approach. Phys. Rev. Lett. 87:168102-168114.
of HIV-infection in artificial
Search WWH ::




Custom Search