Chemistry Reference
In-Depth Information
49. Vyazovkin S, Sbirrazzuoli N (2004) Isoconversional approach to evaluating the Hoffman-
Lauritzen parameters (U * and K g ) from the overall rates of nonisothermal crystallization.
Macromol Rapid Commun 25:733-738
50. Chen K, Vyazovkin S (2009) Temperature dependence of sol-gel conversion kinetics in gel-
atin-water system. Macromol Biosci 9:383-392
51. Farasat R, Yancey B, Vyazovkin S (2013) High temperature solid-solid transition in ammo-
nium chloride confined to nanopores. J Phys Chem C 117:13713-13721
52. Vyazovkin S (2002) Is the Kissinger equation applicable to the processes that occur on cool-
ing? Macromol Rapid Commun 23:771-775
53. Brown ME, Maciejewski M, Vyazovkin S, Nomen R, Sempere J, Burnham A, Opfermann J,
Strey R, Anderson HL, Kemmler A, Keuleers R, Janssens J, Desseyn HO, Li CR, Tang TB,
Roduit B, Malek J, Mitsuhashi T (2000) Computational aspects of kinetic analysis. Part A:
the ICTAC kinetics project-data, methods and results. Thermochim Acta 355:125-143
54. Maciejewski M (2000) Computational aspects of kinetic analysis. Part B: the ICTAC kinetics
project—the decomposition kinetics of calcium carbonate revisited, or some tips on survival
in the kinetic minefield. Thermochim Acta 355:145-154
55. Vyazovkin S (2000) Computational aspects of kinetic analysis. Part C: the ICTAC kinetics
project—the light at the end of the tunnel? Thermochim Acta 355:155-163
56. Burnham AK (2000) Computational aspects of kinetic analysis. Part D: the ICTAC kinetics
project—multi-thermal-history model-fitting methods and their relation to isoconversional
methods. Thermochim Acta 355:165-170
57. Vyazovkin SV, Lesnikovich AI (1988) Estimation of the pre-exponential factor in the isocon-
versional calculation of the effective kinetic parameters. Thermochim Acta 128:297-300
58. Vyazovkin S, Linert W (1995) False isokinetic relationships found in the nonisothermal de-
composition of solids. Chem Phys 193:109-118
59. Sbirrazzuoli N (2013) Determination of pre-exponential factors and of the mathematical
functions f(  ʱ ) or G(  ʱ ) that describe the reaction mechanism in a model-free way. Thermo-
chim Acta 564:59-69
60. Vyazovkin S, Linert W (1995) Thermally induced reactions of solids: isokinetic relationships
of nonisothermal systems. Int Rev Phys Chem 14:355-369
61. Lesnikovich AI, Levchik SV (1983) A method of finding invariant values of kinetic param-
eters. J Therm Anal 27:89-93
62. Tang W, Liu Y, Zhang H, Wang C (2003) New approximate formula for Arrhenius tempera-
ture integral. Thermochim Acta 408:39-43
63. Vyazovkin SV (1992) Alternative description of process kinetics. Thermochim Acta 211:181-
187
64. Zhou D, Schmitt EA, Zhang GGZ, Law D, Wight CA, Vyazovkin S, Grant DJW (2003)
Model-free treatment of the dehydration kinetics of nedocromil sodium trihydrate. J Pharm
Sci 92:1367-1376
65. Sestak J, Berggren G (1971) Study of the kinetics of the mechanism of solid-state reactions
at increased temperature. Thermochim Acta 3:1-12
66. Akulov NS (1940) Basic of chemical dynamics. Mocow Sate University, Moscow. (in Rus-
sian)
67. Young DA (1966) Decompositions of solids. Pergamon, Oxford
68. Perez-Maqueda LA, Criado JM, Sanchez-Jimenez PE (2006) Combined kinetic analysis of
solid-state reactions: a powerful tool for the simultaneous determination of kinetic param-
eters and the kinetic model without previous assumptions on the reaction mechanism. J Phys
Chem A 110:12456-12462
69. Malek J (1992) The kinetic-analysis of nonisothermal data. Thermochim Acta 200:257-269
70. Malek J (1995) The applicability of Johnson-Mehl-Avrami model in the thermal analysis of
the crystallization kinetics of glasses. Thermochim Acta 267:61-73
71.
Criado JM, Malek J, Ortega A (1989) Applicability of the master plots in kinetic-analysis of
non-isothermal data. Thermochim Acta 147:377-385
Search WWH ::




Custom Search