Environmental Engineering Reference
In-Depth Information
Leblanc M, Robinson BH, Petit D, Deram A, Brooks RR (1999) The phytomining and
environmental significance of hyperaccumulation of thallium by Iberis intermedia from
southern France. Econ Geol 94:109-114
LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Abdel Samie M, Chiang
CY, Tagmount A, DeSouza M, Neuhierl B, Bock A, Caruso J, Terry N (2004) Overexpression
of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium
tolerance and accumulation. Plant Physiol 135:377-383
Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects
on soil biota—a review. Soil Biol Biochem 43:1812-1836
Li Y-M, Chaney RL, Reeves RD, Angle JS, Baker AJM (2006) Thlaspi caerulescens sub species
for Cd and Zn recovery. US Patent No.7049, 492. Date issued-23 May
Liu D, Jiang W, Liu C, Xin C, How W (2000) Uptake and accumulation of lead by roots,
hypocotyls and shoots of Indian mustard (Brassica juncea L.). Bioresour Technol 71:273-277
Lombi E, Zhao FJ, Dunham SJ, McGrath SP (2001) Phytoremediation of heavy metal-
contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction.
J Environ Qual 30:1919-1926
Long XX, Yang XE, Ye ZQ, Ni WZ, Shi WY (2002) Differences of uptake of and accumulation
of zinc in four species of Sedum. Acta Botanica Sinica 44:152-157
Luo L, Lou LP, Cui XY, Wu BB, Hou J, Xun B, Xu XH, Chen YX (2011) Sorption and
desorption of pentachlorophenol to black carbon of three different origins. J Hazard Mater
185:639-646
Ma JF, Ryan PR, Delhaize E (2001) Aluminium tolerance in plants and the complexing role of
organic acids. Trends Plant Sci 6:273-278
Macnair MR (2002) Within and between population genetic variations for zinc accumulation in
Arabidopsis halleri. New Phytol 155(1):9-66
Madejon P, Murillo JM, Maranon T, Lepp NW (2007) Factors affecting accumulation of thallium
and
other
trace
elements
in
two
wild
Brassicaceae
spontaneously
growing
on
soils
contaminated by tailings dam waste. Chemosphere 67:20-28
Mains D, Craw D, Rufaut CG, Smith CMS (2006a) Phytostabilization of gold mine tailings, New
Zealand. Part 1: plant establishment in alkaline saline substrate. Int J Phytorem 8(2):131-147
Mains D, Craw D, Rufaut CG, Smith CMS (2006b) Phytostabilization of gold mine tailings from
New Zea-land. Part 2: experimental evaluation of arsenic mobiliza- tion during revegetation.
Int J Phytorem 8(2):163-183
Makridis C, Pateras D, Amberger A (1996) Thallium pollution risk to food chain from cement
plant. Fresenius Environ Bull 5:643-648
Malaisse F, Gregoire J, Morrison RS, Reeves RD (1979) Copper and cobalt in vegetation of
Fungurume, Shaba Province, Zaire. Oikos 33:472-478
Mangabeira PAO, Labejof L, Lamperti A, deAlmeida AAF, Oliveira AH, Escaig F, Severo MIG
(2004) Accumulation of chromium in roots tissues of Eichhornia crassipes (Mart.) Solms. In
Cachoeira river-Brazil. Appl Surf Sci 231(232):497-501
Marris E (2006) Putting the carbon back: black is the New Green. Nature 442:624-626
McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd
and
Zn
phytoextraction
potential
by
the
hyperaccumulators
Thlaspi
caerulescens
and
Arabidopsis halleri. Environ Pollut 141:115-125
Melendo M, Benítez E, Nogales R (2002) Assessment of the feasibility of endogeneous
Mediterranean species for phytoremediation of Pb-contaminated areas. Fresenius Environ
Bull 11:1105-1109
Minguzzi C, Vergnano O (1948) II cotenuto di nichel nelle ceneri di Alyssum bertolonii. Atti Soc
Tosc Sci Nat 55:49-74
Msuya FA, Brooks RR, Anderson CWN (2000) Chemically-induced uptake of gold by root crops:
its significance for phytomining. Gold Bull 33(4):134-137
Mulligan CN, Yong RN, Gibbs BF (1999a) On the use of biosurfactants for the removal of heavy
metals from oil-contaminated soil. Environ Prog 18(1):50-54
Search WWH ::




Custom Search